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Preface

The written word is a powerful thing. The ancient Sumerians invented the first writ‐
ten language, and the introduction of the Gutenberg press allowed the written word
to spread knowledge and enlightenment across the world. Language is in fact so
important to human thinking that anthropologists claim that our ability for complex
reasoning evolved at the same time that we developed language. Language repre‐
sented in the form of text captures most of human thought, deeds, and actions, and
our life is increasingly dominated by it. We communicate with colleagues through
emails, with friends and family via messengers, and with others who share our pas‐
sions using social media tools. Leaders inspire huge populations through speeches
(and tweets) that are recorded as text, leading researchers communicate their findings
via published research papers, and companies communicate their health through
quarterly reports. Even this book uses text to spread knowledge. Analyzing and
understanding text gives us the ability to gain knowledge and make decisions. Text
analytics is about writing computer programs that can analyze vast amounts of infor‐
mation available in the form of text. Before making a product purchase or visiting a
restaurant, we read customer reviews. A company could then use the same reviews
to improve their product or service. A publisher could analyze discussions on the
internet to estimate the demand for a certain programming language before commis‐
sioning a book on it.

It is much harder for a computer to understand text compared to other types of data.
While there are rules of grammar and guidelines to forming sentences, these are often
not strictly followed and depend heavily on context. Even with the correct grammar,
it is hard for a machine to interpret the text correctly. The words that a person choo‐
ses while tweeting would be quite different from writing an email to express the same
thought. There have been recent advances in statistical techniques and machine
learning algorithms that allow us to get past many of these obstacles to derive value
from text data. New models are able to capture the semantic meaning of text better
than previous approaches based on word frequencies alone. But there are also many
business tasks where these simple models perform surprisingly well.
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In one of our client projects, for example, a home appliance manufacturer was able to
understand the key topics affecting customer purchases by analyzing product reviews
and adjust their marketing message to focus on these aspects. In another case, an e-
commerce retailer used a deep neural network to classify customer queries and route
them to the correct department for faster resolution. Analyzing abstracts from scien‐
tific journals has allowed an R&D company to detect trends in new materials and
adjust their research accordingly. A fashion company identified mega-topics in their
customer group by taking a look at posts in social networks. With this book we have
tried to transfer our experiences from these and many other projects into blueprints
that you can easily reuse in your own projects.

Approach of the Book
This book is intended to support data scientists and developers so they can quickly
enter the area of text analytics and natural language processing. Thus, we put the
focus on developing practical solutions that can serve as blueprints in your daily busi‐
ness. A blueprint, in our definition, is a best-practice solution for a common prob‐
lem. It is a template that you can easily copy and adapt for reuse. For these blueprints
we use production-ready Python frameworks for data analysis, natural language
processing, and machine learning. Nevertheless, we also introduce the underlying
models and algorithms.

We do not expect any previous knowledge in the field of natural language processing
but provide you with the necessary background knowledge to get started quickly. In
each chapter, we explain and discuss different solution approaches for the respective
tasks with their potential strengths and weaknesses. Thus, you will not only acquire
the knowledge about how to solve a certain kind of problem but also get a set
of ready-to-use blueprints that you can take and customize to your data and
requirements.

Each of the 13 chapters includes a self-contained use case for a specific aspect of text
analytics (see Table P-1). Based on an example dataset, we develop and explain the
blueprints step by step.

Table P-1. Overview of the chapters

Chapter Dataset Libraries
Chapter 1, Gaining Early Insights from Textual Data
Getting started with the statistical exploration of textual data

UN General Debates Pandas, Regex

Chapter 2, Extracting Textual Insights with APIs
Using different Python modules to extract data from popular APIs

GitHub, Twitter, and
Wikipedia API

Requests, Tweepy

Chapter 3, Scraping Websites and Extracting Data
Using Python libraries to download web pages and extract content

Reuters website Requests, Beautiful
Soup, Readability-
lxml, Scrapy
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Chapter Dataset Libraries
Chapter 4, Preparing Textual Data for Statistics and Machine Learning
Introduction to data cleaning and linguistic processing

Reddit Selfposts Regex, spaCy

Chapter 5, Feature Engineering and Syntactic Similarity
Introduction to features and vectorization

1 million headlines from
ABC News

scikit-learn, NumPy

Chapter 6, Text Classification Algorithms. Text Classification Algorithms
Using machine learning algorithms to classify software bugs

Java Development Tools
bug reports

scikit-learn

Chapter 7, How to Explain a Text Classifier
Explaining models and classification results

Java Development Tools
bug reports

scikit-learn, Lime,
Anchor, ELI5

Chapter 8, Unsupervised Methods: Topic Modeling and Clustering
Using unsupervised methods to gain unbiased insights into text

UN General Debates scikit-learn, Gensim

Chapter 9, Text Summarization
Creating short summaries of news articles and forum threads using rule-
based and machine learning approaches

Reuters News articles,
Travel Forum threads

Sumy, scikit-learn

Chapter 10, Exploring Semantic Relationships with Word Embeddings
Using word embeddings to explore and visualize semantic similarities in a
specific data set

Reddit Selfposts Gensim

Chapter 11, Performing Sentiment Analysis on Text Data
Identifying customer sentiment in Amazon product reviews

Amazon product reviews Transformers, scikit-
learn, NLTK

Chapter 12, Building a Knowledge Graph
How to extract named entities and their relationships using pretrained
models and custom rules

Reuters news on mergers
and acquisitions

spaCy

Chapter 13, Using Text Analytics in Production
Deploy and scale the sentiment analysis blueprint as an API on Google
Cloud Platform

 FastAPI, Docker,
conda, Kubernetes,
gcloud

The choice of topics reflects the most common types of problems in our daily text
analytics work. Typical tasks include data acquisition, statistical data exploration, and
the use of supervised and unsupervised machine learning. The business questions
range from content analysis (“What are people talking about?”) to automatic text
categorization.

Prerequisites
In this book you will learn how to solve text analytics problems efficiently with the
Python ecosystem. We will explain all concepts specific to text analytics and machine
learning in detail but assume that you already have basic knowledge of Python,
including fundamental libraries like Pandas. You should also be familiar with Jupyter
notebooks so that you can experiment with the code while reading the book. If not,
check out the tutorials on learnpython.org, docs.python.org, or DataCamp.

Even though we explain the general ideas of the algorithms used, we won’t go too
much into the details. You should be able to follow the examples and reuse the code
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1 Devlin, Jacob, et al., “BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding.”
2018. https://arxiv.org/abs/1810.04805.

without completely understanding the mathematics behind it. College-level knowl‐
edge of linear algebra and statistics is helpful, though.

Some Important Libraries to Know
Every data analytics project starts with data exploration and data processing. The
most popular Python library for those tasks is definitely Pandas. It offers rich func‐
tionality to access, transform, analyze, and visualize data. If you have never worked
with this framework, we recommend checking out the official introduction, 10
minutes to Pandas, or one of the other free tutorials available on the internet before
reading the book.

For years, scikit-learn has been the machine learning toolkit for Python. It imple‐
ments a large variety of supervised and unsupervised machine learning algorithms as
well as many functions for data preprocessing. We use scikit-learn in several of the
chapters to transform text into numerical vectors and for text classification.

When it comes to deep neural models, however, frameworks like PyTorch or Tensor‐
Flow are clearly superior to scikit-learn. Instead of using those libraries directly, we 
use the Transformers library from Hugging Face in Chapter 11 for sentiment analysis.
Since the publication of BERT,1 transformer-based models outperform previous
approaches on tasks that require an understanding of the meaning of text, and the
Transformers library provides easy access to many pretrained models.

Our favorite library for natural language processing is spaCy. Since its first release in
2016, spaCy enjoys a constantly growing user base. Though open source, it is primar‐
ily developed by the company Explosion. Pretrained neural language models for part-
of-speech tagging, dependency parsing, and named-entity recognition are available
for many languages. We used spaCy version 2.3.2 for the development of this book,
especially for data preparation (Chapter 4) and knowledge extraction (Chapter 12).
At the time of publication, spaCy 3.0 will be out with completely new, transformer-
based models, support for custom models in PyTorch and TensorFlow, and templates
for defining end-to-end workflows.

Another NLP library we use is Gensim, which is maintained by Radim Řehůřek. Gen‐
sim puts the focus on semantic analysis and provides all that is necessary to learn
topic models (Chapter 8) and word embeddings (Chapter 10).

There are many other libraries for natural language processing that can be helpful but
are not or only briefly mentioned in the book. These include NLTK (feature-rich
grandfather of Python NLP libraries), TextBlob (easy to get started), Stanford’s Stanza
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and CoreNLP, as well as Flair (state-of-the-art models for advanced tasks). Our goal
was not to give an overview on everything that’s out there but to choose and explain
those libraries that worked best in our projects.

Books to Read
As we focus on practical solutions for our use cases, you might want to check out
some additional books for further details or topics we did not cover. Below you will
find some recommendations for books to read alongside this one:

Practical Natural Language Processing by Sowmya Vajjala, Bodhisattwa Majumder,
Anuj Gupta, and Harshit Surana (O’Reilly, 2020), ISBN 978-1-492-05405-4.

Natural Language Processing in Action by Hobson Lane, Cole Howard, and Hannes
Hapke (Manning Publications, 2019), ISBN 978-1-617-29463-1.

Mining the Social Web, 3rd Edition by Matthew A. Russell and Mikhail Klassen
(O’Reilly, 2019), ISBN 978-1-491-98504-5.

Applied Text Analysis with Python by Benjamin Bengfort, Rebecca Bilbro, and Tony
Ojeda (O’Reilly 2018), ISBN 978-1-491-96304-3.

Python for Data Analysis, 2nd Edition by Wes McKinney (O’Reilly, 2017), ISBN
978-1-491-95766-0.

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width

Used for program listings, as well as within paragraphs to refer to program ele‐
ments such as variable or function names, databases, data types, environment
variables, statements, and keywords.

Constant width bold

Shows commands or other text that should be typed literally by the user.

Constant width italic

Shows text that should be replaced with user-supplied values or by values deter‐
mined by context.
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This element signifies a tip or suggestion.

This element signifies a general note.

This element indicates a warning or caution.

This element indicates a blueprint.

Using Code Examples
The whole purpose of a blueprint is to be copied. Thus, we provide all the code devel‐
oped in this book in our GitHub repository.

For each chapter, you will find an executable Jupyter notebook with the code from the
book and possibly some additional functions or blueprints that have been omitted.
The repository also contains the necessary datasets and some additional information.

The easiest way to run the notebooks is on Google Colab, Google’s public cloud plat‐
form for machine learning. You don’t even have to install Python on your local com‐
puter; just click on the Colab link for the respective chapter on GitHub (Google
account required). However, we also added instructions for setting up your own (vir‐
tual) Python environment in the GitHub repository. We designed the Jupyter note‐
books in a way that allows you to run them both locally and on Google Colab.

Libraries, data, and websites are subject to continuous change. Therefore, it can easily
happen that the verbatim code in the book will not run properly in the future. To
overcome this, we will keep the repository up to date. If you discover any technical
problems or have recommendations on how to improve the code, do not hesitate to
create an issue in the repository or send us a pull request.

xviii | Preface

https://oreil.ly/btap-code
https://oreil.ly/colab


If you have a technical question or a problem using the code examples, please email
bookquestions@oreilly.com. In the case of technical problems, we recommend creating
an issue in the GitHub repo and refer to O’Reilly’s errata page for errors in the book.

This book is here to help you get your job done. In general, if example code is offered
with this book, you may use it in your programs and documentation. You do not
need to contact us for permission unless you’re reproducing a significant portion of
the code. For example, writing a program that uses several chunks of code from this
book does not require permission. Selling or distributing examples from O’Reilly
books does require permission. Answering a question by citing this book and quoting
example code does not require permission. Incorporating a significant amount
of example code from this book into your product’s documentation does require
permission.

You may use our code freely in your own projects without asking for permission.
Especially if you publicly republish our code, we appreciate attribution. An attribu‐
tion usually includes the title, author, publisher, and ISBN. For example: “Blueprints
for Text Analytics Using Python by Jens Albrecht, Sidharth Ramachandran, and Chris‐
tian Winkler (O’Reilly, 2021), 978-1-492-07408-3.”

If you feel your use of code examples falls outside fair use or the permission given
above, feel free to contact us at permissions@oreilly.com.

O’Reilly Online Learning
For more than 40 years, O’Reilly Media has provided technol‐
ogy and business training, knowledge, and insight to help
companies succeed.

Our unique network of experts and innovators share their knowledge and expertise
through books, articles, and our online learning platform. O’Reilly’s online learning
platform gives you on-demand access to live training courses, in-depth learning
paths, interactive coding environments, and a vast collection of text and video from
O’Reilly and 200+ other publishers. For more information, visit http://oreilly.com.

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
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707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at https://oreil.ly/text-analytics-with-python.

Email bookquestions@oreilly.com to comment or ask technical questions about this
book.

For news and information about our books and courses, visit http://oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://youtube.com/oreillymedia
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CHAPTER 1

Gaining Early Insights from Textual Data

One of the first tasks in every data analytics and machine learning project is to
become familiar with the data. In fact, it is always essential to have a basic under‐
standing of the data to achieve robust results. Descriptive statistics provide reliable
and robust insights and help to assess data quality and distribution.

When considering texts, frequency analysis of words and phrases is one of the main
methods for data exploration. Though absolute word frequencies usually are not very
interesting, relative or weighted frequencies are. When analyzing text about politics,
for example, the most common words will probably contain many obvious and
unsurprising terms such as people, country, government, etc. But if you compare rela‐
tive word frequencies in text from different political parties or even from politicians
in the same party, you can learn a lot from the differences.

What You’ll Learn and What We’ll Build
This chapter presents blueprints for the statistical analysis of text. It gets you started
quickly and introduces basic concepts that you will need to know in subsequent chap‐
ters. We will start by analyzing categorical metadata and then focus on word
frequency analysis and visualization.

After studying this chapter, you will have basic knowledge about text processing and
analysis. You will know how to tokenize text, filter stop words, and analyze textual
content with frequency diagrams and word clouds. We will also introduce TF-IDF
weighting as an important concept that will be picked up later in the book for text
vectorization.

The blueprints in this chapter focus on quick results and follow the KISS principle:
“Keep it simple, stupid!” Thus, we primarily use Pandas as our library of choice for
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data analysis in combination with regular expressions and Python core functionality.
Chapter 4 will discuss advanced linguistic methods for data preparation.

Exploratory Data Analysis
Exploratory data analysis is the process of systematically examining data on an aggre‐
gated level. Typical methods include summary statistics for numerical features as well
as frequency counts for categorical features. Histograms and box plots will illustrate
the distribution of values, and time-series plots will show their evolution.

A dataset consisting of text documents such as news, tweets, emails, or service calls is 
called a corpus in natural language processing. The statistical exploration of such a
corpus has different facets. Some analyses focus on metadata attributes, while others
deal with the textual content. Figure 1-1 shows typical attributes of a text corpus,
some of which are included in the data source, while others could be calculated or
derived. The document metadata comprise multiple descriptive attributes, which are
useful for aggregation and filtering. Time-like attributes are essential to understand‐
ing the evolution of the corpus. If available, author-related attributes allow you to
analyze groups of authors and to benchmark these groups against one another.

Figure 1-1. Statistical features for text data exploration.

Statistical analysis of the content is based on the frequencies of words and phrases.
With the linguistic data preprocessing methods described in Chapter 4, we will
extend the space of analysis to certain word types and named entities. Besides that, 
descriptive scores for the documents could be included in the dataset or derived by
some kind of feature modeling. For example, the number of replies to a user’s post
could be taken as a measure of popularity. Finally, interesting soft facts such as senti‐
ment or emotionality scores can be determined by one of the methods described later
in this book.

Note that absolute figures are generally not very interesting when working with text.
The mere fact that the word problem appears a hundred times does not contain any
relevant information. But the fact that the relative frequency of problem has doubled
within a week can be remarkable.
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Introducing the Dataset
Analyzing political text, be it news or programs of political parties or parliamentary
debates, can give interesting insights on national and international topics. Often, text
from many years is publicly available so that an insight into the zeitgeist can be
gained. Let’s jump into the role of a political analyst who wants to get a feeling for the
analytical potential of such a dataset.

For that, we will work with the UN General Debate dataset. The corpus consists of
7,507 speeches held at the annual sessions of the United Nations General Assembly
from 1970 to 2016. It was created in 2017 by Mikhaylov, Baturo, and Dasandi at Har‐
vard “for understanding and measuring state preferences in world politics.” Each of
the almost 200 countries in the United Nations has the opportunity to present its
views on global topics such international conflicts, terrorism, or climate change at the
annual General Debate.

The original dataset on Kaggle is provided in the form of two CSV files, a big one
containing the speeches and a smaller one with information about the speakers. To
simplify matters, we prepared a single zipped CSV file containing all the information.
You can find the code for the preparation as well as the resulting file in our GitHub
repository.

In Pandas, a CSV file can be loaded with pd.read_csv(). Let’s load the file and dis‐
play two random records of the DataFrame:

file = "un-general-debates-blueprint.csv"
df = pd.read_csv(file)
df.sample(2)

Out:

 session year country country_name speaker position text

3871 51 1996 PER Peru Francisco
Tudela Van
Breughel
Douglas

Minister for
Foreign
Affairs

At the outset, allow me,\nSir, to convey
to you and to this Assembly the
greetings\nand congratulations of the
Peruvian people, as well as\ntheir...

4697 56 2001 GBR United Kingdom Jack Straw Minister for
Foreign
Affairs

Please allow me\nwarmly to
congratulate you, Sir, on your
assumption of\nthe presidency of the
fifty-sixth session of the General
\nAssembly.\nThi...

The first column contains the index of the records. The combination of session num‐
ber and year can be considered as the logical primary key of the table. The country
column contains a standardized three-letter country ISO code and is followed by the
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textual description. Then we have two columns about the speaker and their position.
The last column contains the actual text of the speech.

Our dataset is small; it contains only a few thousand records. It is a great dataset to
use because we will not run into performance problems. If your dataset is larger,
check out “Working with Large Datasets” for options.

Working with Large Datasets
Don’t start data exploration with millions and billions of records. Instead, use a small
sample of the data to get started. This way you can quickly develop the statements and
visualizations you need. Once the analyses are prepared, you can rerun everything on
the large dataset to get the full view.

There are multiple ways to select a sample of the data. The simplest and most useful
one is Pandas’s sample function, which is used in the following command to replace a
DataFrame by a random sample of 10% of its records:

df = df.sample(frac=0.1)

The drawback of this method is that the full dataset must be loaded into main mem‐
ory before it can be sampled. Alternatively, you can load only a subset of the data. For
example, pd.read_csv has two optional parameters, nrows and skiprows, which can
be used to read a slice of the whole file. However, this will select a range of subsequent
rows, not a random sample. If your data is stored in a relational database, you should
check whether it supports random sampling. You could also use some poor man’s
SQL for random sampling like this:

ORDER BY Rand() LIMIT 10000

Or:

WHERE id%10 = 0

Blueprint: Getting an Overview of the Data with
Pandas
In our first blueprint, we use only metadata and record counts to explore

data distribution and quality; we will not yet look at the textual content. We will work
through the following steps:

1. Calculate summary statistics.
2. Check for missing values.
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3. Plot distributions of interesting attributes.
4. Compare distributions across categories.
5. Visualize developments over time.

Before we can start analyzing the data, we need at least some information about the
structure of the DataFrame. Table 1-1 shows some important descriptive properties or
functions.

Table 1-1. Pandas commands to get information about dataframes
df.columns List of column names  
df.dtypes Tuples (column name, data type) Strings are represented as object in versions before Pandas 1.0.
df.info() Dtypes plus memory consumption Use with memory_usage='deep' for good estimates on text.
df.describe() Summary statistics Use with include='O' for categorical data.

Calculating Summary Statistics for Columns
Pandas’s describe function computes statistical summaries for the columns of the
DataFrame. It works on a single series as well as on the complete DataFrame. The
default output in the latter case is restricted to numerical columns. Currently, our
DataFrame contains only the session number and the year as numerical data. Let’s add
a new numerical column to the DataFrame containing the text length to get some
additional information about the distribution of the lengths of the speeches. We rec‐
ommend transposing the result with describe().T to switch rows and columns in
the representation:

df['length'] = df['text'].str.len()

df.describe().T

Out:

 count mean std min 25% 50% 75% max

session 7507.00 49.61 12.89 25.00 39.00 51.00 61.00 70.00

year 7507.00 1994.61 12.89 1970.00 1984.00 1996.00 2006.00 2015.00

length 7507.00 17967.28 7860.04 2362.00 12077.00 16424.00 22479.50 72041.00

describe(), without additional parameters, computes the total count of values, their
mean and standard deviation, and a five-number summary of only the numerical col‐
umns. The DataFrame contains 7,507 entries for session, year, and length. Mean
and standard deviation do not make much sense for year and session, but minimum
and maximum are still interesting. Obviously, our dataset contains speeches from the
25th to the 70th UN General Debate sessions, spanning the years 1970 to 2015.
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A summary for nonnumerical columns can be produced by specifying include='O'
(the alias for np.object). In this case, we also get the count, the number of unique
values, the top-most element (or one of them if there are many with the same number
of occurrences), and its frequency. As the number of unique values is not useful for
textual data, let’s just analyze the country and speaker columns:

df[['country', 'speaker']].describe(include='O').T

Out:

 count unique top freq

country 7507 199 ITA 46

speaker 7480 5428 Seyoum Mesfin 12

The dataset contains data from 199 unique countries and apparently 5,428 speakers.
The number of countries is valid, as this column contains standardized ISO codes.
But counting the unique values of text columns like speaker usually does not give
valid results, as we will show in the next section.

Checking for Missing Data
By looking at the counts in the previous table, we can see that the speaker column
has missing values. So, let’s check all columns for null values by using df.isna() (the
alias to df.isnull()) and compute a summary of the result:

df.isna().sum()

Out:

session            0
year               0
country            0
country_name       0
speaker           27
position        3005
text               0
length             0
dtype: int64

We need to be careful using the speaker and position columns, as the output tells us
that this information is not always available! To prevent any problems, we could sub‐
stitute the missing values with some generic value such as unknown speaker or
unknown position or just the empty string.

6 | Chapter 1: Gaining Early Insights from Textual Data



Pandas supplies the function df.fillna() for that purpose:

df['speaker'].fillna('unknown', inplace=True)

But even the existing values can be problematic because the same speaker’s name
is sometimes spelled differently or even ambiguously. The following statement
computes the number of records per speaker for all documents containing Bush in
the speaker column:

df[df['speaker'].str.contains('Bush')]['speaker'].value_counts()

Out:

George W. Bush        4
Mr. George W. Bush    2
George Bush           1
Mr. George W Bush     1
Bush                  1
Name: speaker, dtype: int64

Any analysis on speaker names would produce the wrong results unless we resolve
these ambiguities. So, we had better check the distinct values of categorical attributes.
Knowing this, we will ignore the speaker information here.

Plotting Value Distributions
One way to visualize the five-number summary of a numerical distribution is a box
plot. It can be easily produced by Pandas’s built-in plot functionality. Let’s take a look
at the box plot for the length column:

df['length'].plot(kind='box', vert=False)

Out:

As illustrated by this plot, 50% percent of the speeches (the box in the middle) have a
length between roughly 12,000 and 22,000 characters, with the median at about
16,000 and a long tail with many outliers to the right. The distribution is obviously
left-skewed. We can get some more details by plotting a histogram:

df['length'].plot(kind='hist', bins=30)
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Out:

For the histogram, the value range of the length column is divided into 30 intervals
of equal width, the bins. The y-axis shows the number of documents falling into each
of these bins.

Comparing Value Distributions Across Categories
Peculiarities in the data often become visible when different subsets of the data are
examined. A nice visualization to compare distributions across different categories is 
Seaborn’s catplot.

We show box and violin plots to compare the distributions of the speech length of the
five permanent members of the UN security council (Figure 1-2). Thus, the category
for the x-axis of sns.catplot is country:

where = df['country'].isin(['USA', 'FRA', 'GBR', 'CHN', 'RUS'])
sns.catplot(data=df[where], x="country", y="length", kind='box')
sns.catplot(data=df[where], x="country", y="length", kind='violin')

Figure 1-2. Box plots (left) and violin plots (right) visualizing the distribution of speech
lengths for selected countries.

The violin plot is the “smoothed” version of a box plot. Frequencies are visualized by
the width of the violin body, while the box is still visible inside the violin. Both plots
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reveal that the dispersion of values, in this case the lengths of the speeches, for Russia
is much larger than for Great Britain. But the existence of multiple peaks, as in Rus‐
sia, only becomes apparent in the violin plot.

Visualizing Developments Over Time
If your data contains date or time attributes, it is always interesting to visualize some
developments within the data over time. A first time series can be created by analyz‐
ing the number of speeches per year. We can use the Pandas grouping function
size() to return the number of rows per group. By simply appending plot(), we can
visualize the resulting DataFrame (Figure 1-3, left):

df.groupby('year').size().plot(title="Number of Countries")

The timeline reflects the development of the number of countries in the UN, as each
country is eligible for only one speech per year. Actually, the UN has 193 members
today. Interestingly, the speech length needed to decrease with more countries enter‐
ing the debates, as the following analysis reveals (Figure 1-3, right):

df.groupby('year').agg({'length': 'mean'}) \
  .plot(title="Avg. Speech Length", ylim=(0,30000))

Figure 1-3. Number of countries and average speech length over time.

Pandas dataframes not only can be easily visualized in Jupyter
notebooks but also can be exported to Excel (.xlsx), HTML, CSV,
LaTeX, and many other formats by built-in functions. There is even
a to_clipboard() function. Check the documentation for details.

Resampling Time
In the UN dataset, we already have yearly data; the integer column year contains dis‐
crete values that we can use for grouping. But usually the dataset includes more fine-
grained date or time values that need to be aggregated to an appropriate granularity
for visualization. Depending on the scenario, this can range from hourly to yearly or
even decades. Fortunately, Pandas has built-in functionality to access datetime values
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1 See the Pandas documentation for a complete list.

on different levels. For example, you can use the dt accessor of the underlying Pandas
Series object to access certain properties such as dt.year directly. The following
table shows some examples:1

Datetime property Description Datetime property Description
dt.date Date part of datetime dt.hour Hour part of datetime

dt.year Year dt.month Month within year as number

dt.quarter Quarter within year as number dt.week Week within year as number

Let’s assume the datetime column in our dateframe actually has the name time as
recommended for our blueprints. Then you could just create an additional year col‐
umn in any DataFrame with this command:

    df['year'] = df['time'].dt.year

Often you need combined values like 2020/Week 24 to plot a time series with appro‐
priate labels. A flexible way to achieve this is to use dt.strftime(), which provides
access to the common strftime (string from time) functionality in Pandas:

    df['week'] = df['time'].dt.strftime("%Y/Week %W")

Pandas even has a built-in function called resample() for time-series resampling.
However, it aggregates the data and is therefore not useful when working with text.

Blueprint: Building a Simple Text Preprocessing
Pipeline
The analysis of metadata such as categories, time, authors, and other

attributes gives some first insights on the corpus. But it’s much more interesting to
dig deeper into the actual content and explore frequent words in different subsets or
time periods. In this section, we will develop a basic blueprint to prepare text for a
quick first analysis consisting of a simple sequence of steps (Figure 1-4). As the out‐
put of one operation forms the input of the next one, such a sequence is also called a
processing pipeline that transforms the original text into a number of tokens.

10 | Chapter 1: Gaining Early Insights from Textual Data

https://oreil.ly/XjAKa
https://oreil.ly/KvMjG
https://oreil.ly/E0oOX


Figure 1-4. Simple preprocessing pipeline.

The pipeline presented here consists of three steps: case-folding into lowercase, toke‐
nization, and stop word removal. These steps will be discussed in depth and extended
in Chapter 4, where we make use of spaCy. To keep it fast and simple here, we build
our own tokenizer based on regular expressions and show how to use an arbitrary
stop word list.

Performing Tokenization with Regular Expressions
Tokenization is the process of extracting words from a sequence of characters.
In Western languages, words are often separated by whitespaces and punctuation
characters. Thus, the simplest and fastest tokenizer is Python’s native str.split()
method, which splits on whitespace. A more flexible way is to use regular
expressions.

Regular expressions and the Python libraries re and regex will be introduced in more
detail in Chapter 4. Here, we want to apply a simple pattern that matches words.
Words in our definition consist of at least one letter as well as digits and hyphens.
Pure numbers are skipped because they almost exclusively represent dates or speech
or session identifiers in this corpus.

The frequently used expression [A-Za-z] is not a good option for matching letters
because it misses accented letters like ä or â. Much better is the POSIX character class
\p{L}, which selects all Unicode letters. Note that we need the regex library instead
of re to work with POSIX character classes. The following expression matches tokens
consisting of at least one letter (\p{L}), preceded and followed by an arbitrary
sequence of alphanumeric characters (\w includes digits, letters, and underscore) and
hyphens (-):

import regex as re

def tokenize(text):
    return re.findall(r'[\w-]*\p{L}[\w-]*', text)

Let’s try it with a sample sentence from the corpus:

text = "Let's defeat SARS-CoV-2 together in 2020!"
tokens = tokenize(text)
print("|".join(tokens))

Out:

Let|s|defeat|SARS-CoV-2|together|in
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2 You can address spaCy’s list similarly with spacy.lang.en.STOP_WORDS.

Treating Stop Words
The most frequent words in text are common words such as determiners, auxiliary
verbs, pronouns, adverbs, and so on. These words are called stop words. Stop words
usually don’t carry much information but hide interesting content because of their
high frequencies. Therefore, stop words are often removed before data analysis or
model training.

In this section, we show how to discard stop words contained in a predefined list.
Common stop word lists are available for many languages and are integrated in
almost any NLP library. We will work with NLTK’s list of stop words here, but you
could use any list of words as a filter.2 For fast lookup, you should always convert a
list to a set. Sets are hash-based structures like dictionaries with nearly constant
lookup time:

import nltk

stopwords = set(nltk.corpus.stopwords.words('english'))

Our approach to remove stop words from a given list, wrapped into the small func‐
tion shown here, consists of a simple list comprehension. For the check, tokens are
converted to lowercase as NLTK’s list contains only lowercase words:

def remove_stop(tokens):
    return [t for t in tokens if t.lower() not in stopwords]

Often you’ll need to add domain-specific stop words to the predefined list. For exam‐
ple, if you are analyzing emails, the terms dear and regards will probably appear in
almost any document. On the other hand, you might want to treat some of the words
in the predefined list not as stop words. We can add additional stop words
and exclude others from the list using two of Python’s set operators, | (union/or) and
- (difference):

include_stopwords = {'dear', 'regards', 'must', 'would', 'also'}
exclude_stopwords = {'against'}

stopwords |= include_stopwords
stopwords -= exclude_stopwords

The stop word list from NLTK is conservative and contains only 179 words. Surpris‐
ingly, would is not considered a stop word, while wouldn’t is. This illustrates a com‐
mon problem with predefined stop word lists: inconsistency. Be aware that removing
stop words can significantly affect the performance of semantically targeted analyses,
as explained in “Why Removing Stop Words Can Be Dangerous” on page 13.
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Why Removing Stop Words Can Be Dangerous
Stop word removal is a coarse-grained rule-based method. Be careful with the stop
word lists you are using, and make sure that you don’t delete valuable information.
Look at this simple example: “I don’t like ice cream.”

Both NLTK and spaCy have I and don’t (same as do not) in their stop word lists. If
you remove those stop words, all that’s left is like ice cream. This kind of preprocess‐
ing would heavily distort any kind of sentiment analysis. TF-IDF weighting, as intro‐
duced later in this section, automatically underweighs frequently occurring words but
keeps those terms in the vocabulary.

In addition to or instead of a fixed list of stop words, it can be helpful to treat every
word that appears in more than, say, 80% of the documents as a stop word. Such
common words make it difficult to distinguish content. The parameter max_df of the 
scikit-learn vectorizers, as covered in Chapter 5, does exactly this. Another method is
to filter words based on the word type (part of speech). This concept will be explained
in Chapter 4.

Processing a Pipeline with One Line of Code
Let’s get back to the DataFrame containing the documents of our corpus. We want to
create a new column called tokens containing the lowercased, tokenized text without
stop words for each document. For that, we use an extensible pattern for a processing
pipeline. In our case, we will change all text to lowercase, tokenize it, and remove stop
words. Other operations can be added by simply extending the pipeline:

pipeline = [str.lower, tokenize, remove_stop]

def prepare(text, pipeline):
    tokens = text
    for transform in pipeline:
        tokens = transform(tokens)
    return tokens

If we put all this into a function, it becomes a perfect use case for Pandas’s map or
apply operation. Functions such as map and apply, which take other functions as
parameters, are called higher-order functions in mathematics and computer science.

Table 1-2. Pandas higher-order functions

Function Description
Series.map Works element by element on a Pandas Series
Series.apply Same as map but allows additional parameters
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3 Check out the documentation for further details.

Function Description
DataFrame.applymap Element by element on a Pandas DataFrame (same as map on Series)
DataFrame.apply Works on rows or columns of a DataFrame and supports aggregation

Pandas supports the different higher-order functions on series and dataframes
(Table 1-2). These functions not only allow you to specify a series of functional data
transformations in a comprehensible way, but they can also be easily parallelized. The
Python package pandarallel, for example, provides parallel versions of map and
apply.

Scalable frameworks like Apache Spark support similar operations on dataframes
even more elegantly. In fact, the map and reduce operations in distributed program‐
ming are based on the same principle of functional programming. In addition, many
programming languages, including Python and JavaScript, have a native map opera‐
tion for lists or arrays.

Using one of Pandas’s higher-order operations, applying a functional transformation
becomes a one-liner:

df['tokens'] = df['text'].apply(prepare, pipeline=pipeline)

The tokens column now consists of Python lists containing the extracted tokens for
each document. Of course, this additional column basically doubles memory con‐
sumption of the DataFrame, but it allows you to quickly access the tokens directly for
further analysis. Nevertheless, the following blueprints are designed in such a way
that the tokenization can also be performed on the fly during analysis. In this way,
performance can be traded for memory consumption: either tokenize once before
analysis and consume memory or tokenize on the fly and wait.

We also add another column containing the length of the token list for summariza‐
tions later:

df['num_tokens'] = df['tokens'].map(len)

tqdm (pronounced taqadum for “progress” in Arabic) is a great 
library for progress bars in Python. It supports conventional loops,
e.g., by using tqdm_range instead of range, and it supports Pandas
by providing progress_map and progress_apply operations on
dataframes.3 Our accompanying notebooks on GitHub use these
operations, but we stick to plain Pandas here in the book.
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4 The NLTK class FreqDist is derived from Counter and adds some convenience functions.

Blueprints for Word Frequency Analysis
Frequently used words and phrases can give us some basic understanding of the dis‐
cussed topics. However, word frequency analysis ignores the order and the context of
the words. This is the idea of the famous bag-of-words model (see also Chapter 5): all
the words are thrown into a bag where they tumble into a jumble. The original
arrangement in the text is lost; only the frequency of the terms is taken into account.
This model does not work well for complex tasks such as sentiment analysis or ques‐
tion answering, but it works surprisingly well for classification and topic modeling. In
addition, it’s a good starting point for understanding what the texts are all about.

In this section, we will develop a number of blueprints to calculate and visualize word
frequencies. As raw frequencies overweigh unimportant but frequent words, we will
also introduce TF-IDF at the end of the process. We will implement the frequency
calculation by using a Counter because it is simple and extremely fast.

Blueprint: Counting Words with a Counter
Python’s standard library has a built-in class Counter, which does exactly
what you might think: it counts things.4 The easiest way to work with a
counter is to create it from a list of items, in our case strings representing

the words or tokens. The resulting counter is basically a dictionary object containing
those items as keys and their frequencies as values.

Let’s illustrate its functionality with a simple example:

from collections import Counter

tokens = tokenize("She likes my cats and my cats like my sofa.")

counter = Counter(tokens)
print(counter)

Out:

Counter({'my': 3, 'cats': 2, 'She': 1, 'likes': 1, 'and': 1, 'like': 1,
         'sofa': 1})

The counter requires a list as input, so any text needs to be tokenized in advance.
What’s nice about the counter is that it can be incrementally updated with a list of
tokens of a second document:
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more_tokens = tokenize("She likes dogs and cats.")
counter.update(more_tokens)
print(counter)

Out:

Counter({'my': 3, 'cats': 3, 'She': 2, 'likes': 2, 'and': 2, 'like': 1,
         'sofa': 1, 'dogs': 1})

To find the most frequent words within a corpus, we need to create a counter from
the list of all words in all documents. A naive approach would be to concatenate all
documents into a single, giant list of tokens, but that does not scale for larger datasets.
It is much more efficient to call the update function of the counter object for each
single document.

counter = Counter()

df['tokens'].map(counter.update)

We do a little trick here and put counter.update in the map function. The magic hap‐
pens inside the update function under the hood. The whole map call runs extremely
fast; it takes only about three seconds for the 7,500 UN speeches and scales linearly
with the total number of tokens. The reason is that dictionaries in general and coun‐
ters in particular are implemented as hash tables. A single counter is pretty compact
compared to the whole corpus: it contains each word only once, along with its
frequency.

Now we can retrieve the most common words in the text with the respective counter
function:

print(counter.most_common(5))

Out:

[('nations', 124508),
 ('united', 120763),
 ('international', 117223),
 ('world', 89421),
 ('countries', 85734)]

For further processing and analysis, it is much more convenient to transform the
counter into a Pandas DataFrame, and this is what the following blueprint function
finally does. The tokens make up the index of the DataFrame, while the frequency val‐
ues are stored in a column named freq. The rows are sorted so that the most frequent
words appear at the head:

def count_words(df, column='tokens', preprocess=None, min_freq=2):

    # process tokens and update counter
    def update(doc):
        tokens = doc if preprocess is None else preprocess(doc)
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        counter.update(tokens)

    # create counter and run through all data
    counter = Counter()
    df[column].map(update)

    # transform counter into a DataFrame
    freq_df = pd.DataFrame.from_dict(counter, orient='index', columns=['freq'])
    freq_df = freq_df.query('freq >= @min_freq')
    freq_df.index.name = 'token'

    return freq_df.sort_values('freq', ascending=False)

The function takes, as a first parameter, a Pandas DataFrame and takes the column
name containing the tokens or the text as a second parameter. As we already stored
the prepared tokens in the column tokens of the DataFrame containing the speeches,
we can use the following two lines of code to compute the DataFrame with word fre‐
quencies and display the top five tokens:

freq_df = count_words(df)
freq_df.head(5)

Out:

token freq
nations 124508
united 120763
international 117223
world 89421
countries 85734

If we don’t want to use precomputed tokens for some special analysis, we could 
tokenize the text on the fly with a custom preprocessing function as the third param‐
eter. For example, we could generate and count all words with 10 or more characters
with this on-the-fly tokenization of the text:

    count_words(df, column='text',
                preprocess=lambda text: re.findall(r"\w{10,}", text))

The last parameter of count_words defines a minimum frequency of tokens to be
included in the result. Its default is set to 2 to cut down the long tail of hapaxes, i.e.,
tokens occurring only once.
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Blueprint: Creating a Frequency Diagram
There are dozens of ways to produce tables and diagrams in Python. We
prefer Pandas with its built-in plot functionality because it is easier to use
than plain Matplotlib. We assume a DataFrame freq_df generated by the

previous blueprint for visualization. Creating a frequency diagram based on such a
DataFrame now becomes basically a one-liner. We add two more lines for formatting:

ax = freq_df.head(15).plot(kind='barh', width=0.95)
ax.invert_yaxis()
ax.set(xlabel='Frequency', ylabel='Token', title='Top Words')

Out:

Using horizontal bars (barh) for word frequencies greatly improves readability
because the words appear horizontally on the y-axis in a readable form. The y-axis is
inverted to place the top words at the top of the chart. The axis labels and title can
optionally be modified.

Blueprint: Creating Word Clouds
Plots of frequency distributions like the ones shown previously give
detailed information about the token frequencies. But it is quite difficult
to compare frequency diagrams for different time periods, categories,

authors, and so on. Word clouds, in contrast, visualize the frequencies by different
font sizes. They are much easier to comprehend and to compare, but they lack the
precision of tables and bar charts. You should keep in mind that long words or words
with capital letters get unproportionally high attraction.
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The Python module wordcloud generates nice word clouds from texts or counters.
The simplest way to use it is to instantiate a word cloud object with some options,
such as the maximum number of words and a stop word list, and then let the word
cloud module handle the tokenization and stop word removal. The following code
shows how to generate a word cloud for the text of the 2015 US speech and display
the resulting image with Matplotlib:

from wordcloud import WordCloud
from matplotlib import pyplot as plt

text = df.query("year==2015 and country=='USA'")['text'].values[0]

wc = WordCloud(max_words=100, stopwords=stopwords)
wc.generate(text)
plt.imshow(wc, interpolation='bilinear')
plt.axis("off")

However, this works only for a single text and not a (potentially large) set of docu‐
ments. For the latter use case, it is much faster to create a frequency counter first and
then use the function generate_from_frequencies().

Our blueprint is a little wrapper around this function to also support a Pandas Series
containing frequency values as created by count_words. The WordCloud class already
has a magnitude of options to fine-tune the result. We use some of them in the fol‐
lowing function to demonstrate possible adjustments, but you should check the doc‐
umentation for details:

def wordcloud(word_freq, title=None, max_words=200, stopwords=None):

    wc = WordCloud(width=800, height=400,
                   background_color= "black", colormap="Paired",
                   max_font_size=150, max_words=max_words)

    # convert DataFrame into dict
    if type(word_freq) == pd.Series:
        counter = Counter(word_freq.fillna(0).to_dict())
    else:
        counter = word_freq

    # filter stop words in frequency counter
    if stopwords is not None:
        counter = {token:freq for (token, freq) in counter.items()
                              if token not in stopwords}
    wc.generate_from_frequencies(counter)

    plt.title(title)

    plt.imshow(wc, interpolation='bilinear')
    plt.axis("off")
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5 Note that the wordcloud module ignores the stop word list if generate_from_frequencies is called. There‐
fore, we apply an extra filter.

The function has two convenience parameters to filter words. skip_n skips the top n
words of the list. Obviously, in a UN corpus words like united, nations, or interna‐
tional are heading the list. It may be more interesting to visualize what comes next.
The second filter is an (additional) list of stop words. Sometimes it is helpful to filter
out specific frequent but uninteresting words for the visualization only.5

So, let’s take a look at the 2015 speeches (Figure 1-5). The left word cloud visualizes
the most frequent words unfiltered. The right word cloud instead treats the 50 most
frequent words of the complete corpus as stop words:

freq_2015_df = count_words(df[df['year']==2015])
plt.figure()
wordcloud(freq_2015_df['freq'], max_words=100)
wordcloud(freq_2015_df['freq'], max_words=100, stopwords=freq_df.head(50).index)

Figure 1-5. Word clouds for the 2015 speeches including all words (left) and without the
50 most frequent words (right).

Clearly, the right word cloud without the most frequent words of the corpus gives a
much better idea of the 2015 topics, but there are still frequent and unspecific words
like today or challenges. We need a way to give less weight to those words, as shown in
the next section.

Blueprint: Ranking with TF-IDF
As illustrated in Figure 1-5, visualizing the most frequent words usually
does not reveal much insight. Even if stop words are removed, the most
common words are usually obvious domain-specific terms that are quite

similar in any subset (slice) of the data. But we would like to give more importance to
those words that appear more frequently in a given slice of the data than “usual.” Such
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6 For example, scikit-learn’s TfIdfVectorizer adds +1.
7 Another option is to add +1 in the denominator to prevent a division by zero for unseen terms with df(t) = 0.

This technique is called smoothing.

a slice can be any subset of the corpus, e.g., a single speech, the speeches of a certain
decade, or the speeches from one country.

We want to highlight words whose actual word frequency in a slice is higher than
their total probability would suggest. There is a number of algorithms to measure the
“surprise” factor of a word. One of the simplest but best working approaches is to
complement the term frequency with the inverse document frequency (see sidebar).

Inverse Document Frequency
The inverse document frequency (IDF) is a weighting factor that measures the “unusu‐
alness” of a term in a corpus. It is often used to reduce the influence of common
terms for data analysis or machine learning. To explain it, let’s first define the docu‐
ment frequency of a term t. Given a corpus (set of documents) C, the document fre‐
quency d f t  is simply the number of documents d in C that contain the term t.
Mathematically, it looks as follows:

d f t = d ∈ C t ∈ d

Terms appearing in many documents have a high document frequency. Based on this,
we can define the inverse document frequency id f t  as follows:

id f t = log C
d f t

The logarithm is used for sublinear scaling. Otherwise, rare words would get
extremely high IDF scores. Note that id f t = 0 for terms that appear in all docu‐
ments, i.e., d f t = C . To not completely ignore those terms, some libraries add a
constant to the whole term.6 We add the term 0.1, which is roughly the value of
tokens appearing in 90% of the documents (log 1/0 . 9 ).7

For the weighting of a term t in a set of documents D ⊆ C, we compute the TF-IDF-
score as the product of the term frequency t f t, D  and the IDF of term t:

t f id f t, D = t f t, D · id f t

This score yields high values for terms appearing frequently in the selected docu‐
ment(s) D but rarely in the other documents of the corpus.
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Let’s define a function to compute the IDF for all terms in the corpus. It is almost
identical to count_words, except that each token is counted only once per document
(counter.update(set(tokens))), and the IDF values are computed after counting.
The parameter min_df serves as a filter for the long tail of infrequent words. The
result of this function is again a DataFrame:

def compute_idf(df, column='tokens', preprocess=None, min_df=2):

    def update(doc):
        tokens = doc if preprocess is None else preprocess(doc)
        counter.update(set(tokens))

    # count tokens
    counter = Counter()
    df[column].map(update)

    # create DataFrame and compute idf
    idf_df = pd.DataFrame.from_dict(counter, orient='index', columns=['df'])
    idf_df = idf_df.query('df >= @min_df')
    idf_df['idf'] = np.log(len(df)/idf_df['df'])+0.1
    idf_df.index.name = 'token'
    return idf_df

The IDF values need to be computed once for the entire corpus (do not use a subset
here!) and can then be used in all kinds of analyses. We create a DataFrame containing
the IDF values for each token (idf_df) with this function:

idf_df = compute_idf(df)

As both the IDF and the frequency DataFrame have an index consisting of the tokens,
we can simply multiply the columns of both DataFrames to calculate the TF-IDF
score for the terms:

freq_df['tfidf'] = freq_df['freq'] * idf_df['idf']

Let’s compare the word clouds based on word counts (term frequencies) alone and
TF-IDF scores for the speeches of the first and last years in the corpus. We remove
some more stop words that stand for the numbers of the respective debate sessions.

freq_1970 = count_words(df[df['year'] == 1970])
freq_2015 = count_words(df[df['year'] == 2015])

freq_1970['tfidf'] = freq_1970['freq'] * idf_df['idf']
freq_2015['tfidf'] = freq_2015['freq'] * idf_df['idf']

#wordcloud(freq_df['freq'], title='All years', subplot=(1,3,1))
wordcloud(freq_1970['freq'], title='1970 - TF',
          stopwords=['twenty-fifth', 'twenty-five'])
wordcloud(freq_2015['freq'], title='2015 - TF',
          stopwords=['seventieth'])
wordcloud(freq_1970['tfidf'], title='1970 - TF-IDF',
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          stopwords=['twenty-fifth', 'twenty-five', 'twenty', 'fifth'])
wordcloud(freq_2015['tfidf'], title='2015 - TF-IDF',
          stopwords=['seventieth'])

The word clouds in Figure 1-6 impressively demonstrate the power of TF-IDF
weighting. While the most common words are almost identical in 1970 and 2015, the
TF-IDF weighted visualizations emphasize the differences of political topics.

Figure 1-6. Words weighted by plain counts (upper) and TF-IDF (lower) for speeches in
two selected years.

The experienced reader might wonder why we implemented functions to count
words and compute IDF values ourselves instead of using the classes CountVector
izer and TfidfVectorizer of scikit-learn. Actually, there two reasons. First, the vec‐
torizers produce a vector with weighted term frequencies for each single document
instead of arbitrary subsets of the dataset. Second, the results are matrices (good for
machine learning) and not dataframes (good for slicing, aggregation, and visualiza‐
tion). We would have to write about the same number of code lines in the end to
produce the results in Figure 1-6 but miss the opportunity to introduce this impor‐
tant concept from scratch. The scikit-learn vectorizers will be discussed in detail in
Chapter 5.
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Blueprint: Finding a Keyword-in-Context
Word clouds and frequency diagrams are great tools to visually summa‐
rize textual data. However, they also often raise questions about why a cer‐

tain term appears so prominently. For example, the 2015 TF-IDF word cloud
discussed earlier shows the terms pv, sdgs, or sids, and you probably do not know
their meaning. To find that out, we need a way to inspect the actual occurrences of
those words in the original, unprepared text. A simple yet clever way to do such an
inspection is the keyword-in-context (KWIC) analysis. It produces a list of text frag‐
ments of equal length showing the left and right context of a keyword. Here is a sam‐
ple of the KWIC list for sdgs, which gives us an explanation of that term:

5 random samples out of 73 contexts for 'sdgs':
 of our planet and its people. The   SDGs   are a tangible manifestation of th
nd, we are expected to achieve the   SDGs   and to demonstrate dramatic develo
ead by example in implementing the   SDGs   in Bangladesh. Attaching due impor
the Sustainable Development Goals (  SDGs  ). We applaud all the Chairs of the
new Sustainable Development Goals (  SDGs  ) aspire to that same vision. The A

Obviously, sdgs is the lowercased version of SDGs, which stands for “sustainable
development goals.” With the same analysis we can learn that sids stands for “small
island developing states.” That is important information to interpret the topics of
2015! pv, however, is a tokenization artifact. It is actually the remainder of citation
references like (A/70/PV.28), which stands for “Assembly 70, Process Verbal 28,” i.e.,
speech 28 of the 70th assembly.

Always look into the details when you encounter tokens that you
do not know or that do not make sense to you! Often they carry
important information (like sdgs) that you as an analyst should be
able to interpret. But you’ll also often find artifacts like pv. Those
should be discarded if irrelevant or treated correctly.

KWIC analysis is implemented in NLTK and textacy. We will use textacy’s KWIC func‐
tion because it is fast and works on the untokenized text. Thus, we can search for
strings spanning multiple tokens like “climate change,” while NLTK cannot. Both
NLTK and textacy’s KWIC functions work on a single document only. To extend
the analysis to a number of documents in a DataFrame, we provide the following
function:

from textacy.text_utils import KWIC

def kwic(doc_series, keyword, window=35, print_samples=5):

    def add_kwic(text):
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8 The parameter print_only in textacy’s KWIC function works similarly but does not sample.

        kwic_list.extend(KWIC(text, keyword, ignore_case=True,
                              window_width=window, print_only=False))

    kwic_list = []
    doc_series.map(add_kwic)

    if print_samples is None or print_samples==0:
        return kwic_list
    else:
        k = min(print_samples, len(kwic_list))
        print(f"{k} random samples out of {len(kwic_list)} " + \
              f"contexts for '{keyword}':")
        for sample in random.sample(list(kwic_list), k):
            print(re.sub(r'[\n\t]', ' ', sample[0])+'  '+ \
                  sample[1]+'  '+\
                  re.sub(r'[\n\t]', ' ', sample[2]))

The function iteratively collects the keyword contexts by applying the add_kwic func‐
tion to each document with map. This trick, which we already used in the word count
blueprints, is very efficient and enables KWIC analysis also for larger corpora. By
default, the function returns a list of tuples of the form (left context, keyword,
right context). If print_samples is greater than 0, a random sample of the results
is printed.8 Sampling is especially useful when you work with lots of documents
because the first entries of the list would otherwise stem from a single or a very small
number of documents.

The KWIC list for sdgs from earlier was generated by this call:

kwic(df[df['year'] == 2015]['text'], 'sdgs', print_samples=5)

Blueprint: Analyzing N-Grams
Just knowing that climate is a frequent word does not tell us too much
about the topic of discussion because, for example, climate change and

political climate have completely different meanings. Even change climate is not the
same as climate change. It can therefore be helpful to extend frequency analyses from
single words to short sequences of two or three words.

Basically, we are looking for two types of word sequences: compounds and colloca‐
tions. A compound is a combination of two or more words with a specific meaning. In
English, we find compounds in closed form, like earthquake; hyphenated form like
self-confident; and open form like climate change. Thus, we may have to consider two
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9 See Scott Triglia’s blog post for an explanation.

tokens as a single semantic unit. Collocations, in contrast, are words that are fre‐
quently used together. Often, they consist of an adjective or verb and a noun, like red
carpet or united nations.

In text processing, we usually work with bigrams (sequences of length 2), sometimes
even trigrams (length 3). n-grams of size 1 are single words, also called unigrams. The
reason to stick to n ≤ 3 is that the number of different n-grams increases exponen‐
tially with respect to n, while their frequencies decrease in the same way. By far the
most trigrams appear only once in a corpus.

The following function produces elegantly the set of n-grams for a sequence of
tokens:9

def ngrams(tokens, n=2, sep=' '):
    return [sep.join(ngram) for ngram in zip(*[tokens[i:] for i in range(n)])]

text = "the visible manifestation of the global climate change"
tokens = tokenize(text)
print("|".join(ngrams(tokens, 2)))

Out:

the visible|visible manifestation|manifestation of|of the|the global|
global climate|climate change

As you can see, most of the bigrams contain stop words like prepositions and deter‐
miners. Thus, it is advisable to build bigrams without stop words. But we need to be
careful: if we remove the stop words first and then build the bigrams, we generate
bigrams that don’t exist in the original text as a “manifestation global” in the example.
Thus, we create the bigrams on all tokens but keep only those that do not contain any
stop words with this modified ngrams function:

def ngrams(tokens, n=2, sep=' ', stopwords=set()):
    return [sep.join(ngram) for ngram in zip(*[tokens[i:] for i in range(n)])
            if len([t for t in ngram if t in stopwords])==0]

print("Bigrams:", "|".join(ngrams(tokens, 2, stopwords=stopwords)))
print("Trigrams:", "|".join(ngrams(tokens, 3, stopwords=stopwords)))

Out:

Bigrams: visible manifestation|global climate|climate change
Trigrams: global climate change

Using this ngrams function, we can add a column containing all bigrams to our Data
Frame and apply the word count blueprint to determine the top five bigrams:
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df['bigrams'] = df['text'].apply(prepare, pipeline=[str.lower, tokenize]) \
                          .apply(ngrams, n=2, stopwords=stopwords)

count_words(df, 'bigrams').head(5)

Out:

token freq
united nations 103236
international community 27786
general assembly 27096
security council 20961
human rights 19856

You may have noticed that we ignored sentence boundaries during tokenization.
Thus, we will generate nonsense bigrams with the last word of one sentence and the
first word of the next. Those bigrams will not be very frequent, so they don’t really
matter for data exploration. If we wanted to prevent this, we would need to identify
sentence boundaries, which is much more complicated than word tokenization and
not worth the effort here.

Now let’s extend our TF-IDF-based unigram analysis from the previous section and
include bigrams. We add the bigram IDF values, compute the TF-IDF-weighted
bigram frequencies for all speeches from 2015, and generate a word cloud from the
resulting DataFrame:

# concatenate existing IDF DataFrame with bigram IDFs
idf_df = pd.concat([idf_df, compute_idf(df, 'bigrams', min_df=10)])

freq_df = count_words(df[df['year'] == 2015], 'bigrams')
freq_df['tfidf'] = freq_df['freq'] * idf_df['idf']
wordcloud(freq_df['tfidf'], title='all bigrams', max_words=50)

As we can see in the word cloud on the left of Figure 1-7, climate change was a fre‐
quent bigram in 2015. But to understand the different contexts of climate, it may be
interesting to take a look at the bigrams containing climate only. We can use a text
filter on climate to achieve this and plot the result again as a word cloud (Figure 1-7,
right):

where = freq_df.index.str.contains('climate')
wordcloud(freq_df[where]['freq'], title='"climate" bigrams', max_words=50)
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Figure 1-7. Word clouds for all bigrams and bigrams containing the word climate.

The approach presented here creates and weights all n-grams that do not contain stop
words. For a first analysis, the results look quite good. We just don’t care about the
long tail of infrequent bigrams. More sophisticated but also computationally expen‐
sive algorithms to identify collocations are available, for example, in NLTK’s colloca‐
tion finder. We will show alternatives to identify meaningful phrases in Chapters 4
and 10.

Blueprint: Comparing Frequencies Across Time
Intervals and Categories
You surely know Google Trends, where you can track the development of

a number of search terms over time. This kind of trend analysis computes frequencies
by day and visualizes them with a line chart. We want to track the development of
certain keywords over the course of the years in our UN Debates dataset to get an
idea about the growing or shrinking importance of topics such as climate change, ter‐
rorism, or migration.

Creating Frequency Timelines
Our approach is to calculate the frequencies of given keywords per document and
then aggregate those frequencies using Pandas’s groupby function. The following
function is for the first task. It extracts the counts of given keywords from a list of
tokens:

def count_keywords(tokens, keywords):
    tokens = [t for t in tokens if t in keywords]
    counter = Counter(tokens)
    return [counter.get(k, 0) for k in keywords]
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Let’s demonstrate the functionality with a small example:

keywords = ['nuclear', 'terrorism', 'climate', 'freedom']
tokens = ['nuclear', 'climate', 'climate', 'freedom', 'climate', 'freedom']

print(count_keywords(tokens, keywords))

Out:

[1, 0, 3, 2]

As you can see, the function returns a list or vector of word counts. In fact, it’s a very
simple count-vectorizer for keywords. If we apply this function to each document in
our DataFrame, we get a matrix of counts. The blueprint function count_key
words_by, shown next, does exactly this as a first step. The matrix is then again con‐
verted into a DataFrame that is finally aggregated and sorted by the supplied grouping
column.

def count_keywords_by(df, by, keywords, column='tokens'):

    freq_matrix = df[column].apply(count_keywords, keywords=keywords)
    freq_df = pd.DataFrame.from_records(freq_matrix, columns=keywords)
    freq_df[by] = df[by] # copy the grouping column(s)

    return freq_df.groupby(by=by).sum().sort_values(by)

This function is very fast because it has to take care of the keywords only. Counting
the four keywords from earlier in the UN corpus takes just two seconds on a laptop.
Let’s take a look at the result:

freq_df = count_keywords_by(df, by='year', keywords=keywords)

Out:

nuclear terrorism climate freedom year

1970 192 7 18 128

1971 275 9 35 205

... ... ... ... ...

2014 144 404 654 129

2015 246 378 662 148

Even though we use only the attribute year as a grouping criterion
in our examples, the blueprint function allows you to compare
word frequencies across any discrete attribute, e.g., country, cate‐
gory, author—you name it. In fact, you could even specify a list of
grouping attributes to compute, for example, counts per country
and year.
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The resulting DataFrame is already perfectly prepared for plotting as we have one data
series per keyword. Using Pandas’s plot function, we get a nice line chart similar to
Google Trends (Figure 1-8):

freq_df.plot(kind='line')

Figure 1-8. Frequencies of selected words per year.

Note the peak of nuclear in the 1980s indicating the arms race and the high peak of
terrorism in 2001. It is somehow remarkable that the topic climate already got some
attention in the 1970s and 1980s. Has it really? Well, if you check with a KWIC analy‐
sis (“Blueprint: Finding a Keyword-in-Context” on page 24), you’d find out that the
word climate in those decades was almost exclusively used in a figurative sense.

Creating Frequency Heatmaps
Say we want to analyze the historic developments of global crises like the cold war,
terrorism, and climate change. We could pick a selection of significant words and vis‐
ualize their timelines by line charts as in the previous example. But line charts
become confusing if you have more than four or five lines. An alternative visualiza‐
tion without that limitation is a heatmap, as provided by the Seaborn library. So, let’s
add a few more keywords to our filter and display the result as a heatmap
(Figure 1-9).

keywords = ['terrorism', 'terrorist', 'nuclear', 'war', 'oil',
            'syria', 'syrian', 'refugees', 'migration', 'peacekeeping',
            'humanitarian', 'climate', 'change', 'sustainable', 'sdgs']

freq_df = count_keywords_by(df, by='year', keywords=keywords)

# compute relative frequencies based on total number of tokens per year
freq_df = freq_df.div(df.groupby('year')['num_tokens'].sum(), axis=0)
# apply square root as sublinear filter for better contrast
freq_df = freq_df.apply(np.sqrt)
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sns.heatmap(data=freq_df.T,
            xticklabels=True, yticklabels=True, cbar=False, cmap="Reds")

Figure 1-9. Word frequencies over time as heatmap.

There are a few things to consider for this kind of analysis:

Prefer relative frequencies for any kind of comparison.
Absolute term frequencies are problematic if the total number of tokens per year
or category is not stable. For example, absolute frequencies naturally go up if
more countries are speaking year after year in our example.

Be careful with the interpretation of frequency diagrams based on keyword lists.
Although the chart looks like a distribution of topics, it is not! There may be
other words representing the same topic but not included in the list. Keywords
may also have different meanings (e.g., “climate of the discussion”). Advanced
techniques such as topic modeling (Chapter 8) and word embeddings (Chap‐
ter 10) can help here.

Use sublinear scaling.
As the frequency values differ greatly, it may be hard to see any change for less-
frequent tokens. Therefore, you should scale the frequencies sublinearly (we
applied the square root np.sqrt). The visual effect is similar to lowering contrast.

Closing Remarks
We demonstrated how to get started analyzing textual data. The process for text prep‐
aration and tokenization was kept simple to get quick results. In Chapter 4, we will
introduce more sophisticated methods and discuss the advantages and disadvantages
of different approaches.
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Data exploration should not only provide initial insights but actually help to develop
confidence in your data. One thing you should keep in mind is that you should
always identify the root cause for any strange tokens popping up. The KWIC analysis
is a good tool to search for such tokens.

For a first analysis of the content, we introduced several blueprints for word fre‐
quency analysis. The weighting of terms is based either on term frequency alone or
on the combination of term frequency and inverse document frequency (TF-IDF).
These concepts will be picked up later in Chapter 5 because TF-IDF weighting is a
standard method to vectorize documents for machine learning.

There are many aspects of textual analysis that we did not cover in this chapter:

• Author-related information can help to identify influential writers, if that is one
of your project goals. Authors can be distinguished by activity, social scores, writ‐
ing style, etc.

• Sometimes it is interesting to compare authors or different corpora on the same
topic by their readability. The textacy library has a function called textstats
that computes different readability scores and other statistics in a single pass over
the text.

• An interesting tool to identify and visualize distinguishing terms between cate‐
gories (e.g., political parties) is Jason Kessler’s Scattertext library.

• Besides plain Python, you can also use interactive visual tools for data analysis.
Microsoft’s PowerBI has a nice word cloud add-on and lots of other options to
produce interactive charts. We mention it because it is free to use in the desktop
version and supports Python and R for data preparation and visualization.

• For larger projects, we recommend setting up a search engine like Apache SOLR,
Elasticsearch, or Tantivy. Those platforms create specialized indexes (also using
TF-IDF weighting) for fast full-text search. Python APIs are available for all of
them.
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CHAPTER 2

Extracting Textual Insights with APIs

When you want to determine the approach to a research question or start working on
a text analytics project, the availability of data is often the first stumbling block. A
simple Google search or the more specific Dataset search will throw up curated data‐
sets, and we will use some of these in subsequent chapters of this book. Depending on 
your project, such datasets may turn out to be generic and not suitable for your use
case. You might have to create your own dataset, and application programming inter‐
faces (APIs) are one way to extract data programmatically in an automated fashion.

What You’ll Learn and What We’ll Build
In this chapter, we will provide an overview of APIs and introduce blueprints to
extract data for your project from popular websites like GitHub and Twitter. You will
learn about using authentication tokens, handling pagination, understanding rate
limits, and automating data extraction. At the end of this chapter, you will be able to
create your own datasets by making API calls to any identified service. While the
blueprints are illustrated with specific examples such as GitHub and Twitter, they can
be used to work with any API.

Application Programming Interfaces
APIs are interfaces that allow software applications or components to communicate
with one another without having to know how they are implemented. The API pro‐
vides a set of definitions and protocols including the kinds of requests that can be
made, the data formats to be used, and the expected response. An API is a set of soft‐
ware interfaces that is commonly used by developers while building websites, apps,
and services. For example, when you sign up for a new account with almost any
service, you will be asked to verify your email address or telephone number with a
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one-time code or link. Typically, the developer would use the API provided by an
authentication service to enable this functionality rather than build the entire flow.
This allows decoupling of the core functionality that the service provides and uses
APIs to build other necessary, but not unique, features. You can read an intuitive
nontechnical introduction to APIs provided by Zapier for a better understanding.

How are programming APIs connected with data for text analytics projects? In addi‐
tion to enabling basic functionality such as authentication, common functionality on
websites is also offered as APIs, providing us with an alternative way of accessing
data. For example, third-party tools make use of APIs to create a post or add com‐
ments on social media. We can use these same APIs to read and store this informa‐
tion locally to create our dataset. For instance, say you are an analyst working at a
Consumer Packaged Goods firm looking to evaluate the performance of a marketing
campaign. You could extract data using the Twitter Search API, filter tweets that con‐
tain the campaign tagline or hashtag, and analyze the text to understand people’s
reactions. Or consider that you are asked by a training provider to help identify
upcoming technology areas for new courses. One approach could be to extract data
on questions being asked using the StackOverflow API and identify emerging topics
using text analytics.

Using APIs is the preferred approach over scraping a website. They are designed to be
callable functions, are easy to use, and can be automated. They are specifically recom‐
mended when working with data that changes frequently or when it’s critical that the
project reflects the latest information. When working with any API, it’s important to
take the time and read the documentation carefully. It provides granular information
on the specific API call, data formats, and parameters as well as other details like user
permissions, rate limits, and so on.

Not all APIs are provided free of charge, and some providers have
different plans to support different kinds of customers. For exam‐
ple, the Twitter API has Standard, Premium, and Enterprise ver‐
sions. The Standard API is a public API (available to anyone with a
developer account), while the Premium and Enterprise APIs are
only for paying customers. We will use only public APIs in this
chapter.
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Blueprint: Extracting Data from an API Using the
Requests Module
With the popularity of the web driven by the HTTP standard, a URL is

most often the primary specification for an API. We will use the requests library that
is included in the standard Python distribution as the primary way to access and
extract data from an API. To illustrate this blueprint, we will use the GitHub API. Git‐
Hub is a popular code hosting platform where several open source projects such as
Python, scikit-learn, and TensorFlow, as well as the code for this book, are hosted.
Let’s say that you would like to determine the popularity of different programming
languages such as Python, Java, and JavaScript. We could extract data from GitHub
on the languages used by popular repositories and determine the prevalence of each
language. Or consider that your organization is hosting a project on GitHub and
wants to ensure that users and contributors adhere to the Code of Conduct. We can
extract the issues and comments written by contributors and ensure that offensive
language is not used. In this blueprint, we will read and understand the documenta‐
tion of an API, make requests, and parse the output and create a dataset that can be
used to solve our use case.

SOAP Versus REST Versus GraphQL
APIs have existed as a standard for software interfaces and communications for a
long time, and the technology used to implement them has changed over the years.
Simple Object Access Protocol (SOAP) was one of the earliest methods for different
software modules to speak with one another using standard interfaces. SOAP uses a
standard messaging format encapsulated using the Extensible Markup Language
(XML) and can use any communication protocol (like HTTP, TCP) to transmit the
message. The SOAP envelope contained in the XML follows a standard definition
including the definition of data types, error codes, and so on. Representational State
Transfer (REST), on the other hand, relies on HTTP as the communication protocol
including the use of status codes to determine successful or failed calls. It defines data
types much more loosely and uses JSON heavily, though other formats are also sup‐
ported. SOAP is generally considered an older protocol and is typically used within
legacy applications in large enterprises, while REST is a preferred format adopted by
several web-based services. Graph Query Language (GraphQL) is a relatively new
specification that defines a way to interact with APIs similar to writing SQL queries.
One of the drawbacks of the REST architecture is that retrieving a single piece of
information might require multiple calls to different resources. This will depend on
how the resources are organized; for instance, to determine whether a user’s phone
number is active, one would have to make an API call to the /user endpoint to
retrieve all details followed by a subsequent call to a different endpoint like /contacts

Blueprint: Extracting Data from an API Using the Requests Module | 35

https://oreil.ly/oUIG1


with the phone number to check whether that phone number is active. In GraphQL
this would be a single API call with a specific SQL-like query where all active phone
numbers of a given user would be retrieved. While GraphQL has gained popularity
since it was open sourced by Facebook in 2015, REST APIs are much more common.
GitHub, for example, maintains version three of its APIs as a REST API that we will
use in the blueprint, whereas the latest version four is a GraphQL API.

The first API we want to call is to list all the repositories on GitHub. The entry point
to the REST API documentation can be found on GitHub. You can either search for
the specific method (also referred to as the endpoint) or navigate to the GitHub page
to see its details, as shown in Figure 2-1.

Figure 2-1. API documentation for listing public repositories.

As stated in the documentation, this is a GET method that will provide you with a list
of repositories in the order they were created. Let’s make a call using the
requests.get method and view the response status:

import requests

response = requests.get('https://api.github.com/repositories',
                        headers={'Accept': 'application/vnd.github.v3+json'})
print(response.status_code)

Out:

200

A response code of 200 indicates that the call to the API was successful. We can also
evaluate the encoding of the response object to ensure that we process it correctly.
One of the important elements contained in the response object is the headers object.
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It is a dictionary that contains more detailed information, such as the name of the
server, response timestamp, status, and so on. In the following code, we only extract
the type of content and server details that have been returned by the API, but you are
encouraged to look at all of the elements of this object. Most of this information is
present in the detailed API documentation, but inspecting the response is another
way to ensure that you parse the response accurately:

print (response.encoding)
print (response.headers['Content-Type'])
print (response.headers['server'])

Out:

utf-8
application/json; charset=utf-8
GitHub.com

Looking at the response parameters, we understand that the response follows a
UTF-8 encoding, and the content is returned using the JSON format. The content can
be directly accessed using the content element, which provides the payload in the
form of bytes. Since we already know that the response is a JSON object, we can also
use the json() command to read the response. This creates a list object where each
element is a repository. We show the first element in the response that identifies the
first GitHub repository that was created. We have limited the output to the first 200
characters for the sake of brevity:

import json
print (json.dumps(response.json()[0], indent=2)[:200])

Out:

{
  "id": 1,
  "node_id": "MDEwOlJlcG9zaXRvcnkx",
  "name": "grit",
  "full_name": "mojombo/grit",
  "private": false,
  "owner": {
    "login": "mojombo",
    "id": 1,
    "node_id": "MDQ6VXNlcjE=",
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While the previous response contains a list of repositories, it is not helpful when
looking for specific programming languages. It might be better to use the Search API,
which we will use next:

response = requests.get('https://api.github.com/search/repositories')
print (response.status_code)

Out:

422

The previous request was not successful as it returned with a status code of 422. This
code indicates that the request was correct, but the server was not able to process the
request. This is because we have not provided any search query parameter as speci‐
fied in the documentation. It is important to always check and understand the status
before proceeding to view the response. You can view a detailed definition of each
status code in the HTTP specification.

Let’s say that we want to identify GitHub repositories related to data science that are
written in Python. We will modify the request by adding a second argument called
params with the search terms. The search query needs to be constructed following the
rules described in GitHub’s documentation. Based on these rules, our search query is
encoded to look for data_science, filter the language by Python (language:python),
and combine the two (+). This constructed query is passed as the query argument q to
params. We also pass the argument headers containing the Accept parameter where
we specify text-match+json so that the response contains the matching metadata
and provides the response in JSON format:

response = requests.get('https://api.github.com/search/repositories',
    params={'q': 'data_science+language:python'},
    headers={'Accept': 'application/vnd.github.v3.text-match+json'})
print(response.status_code)

Out:

200

As described in the example provided in the API documentation for the /search/
repositories endpoint, the response contains a dictionary with total_count, incom
plete_results, and items. It is important to note that this response format is differ‐
ent from the /repositories endpoint we saw earlier, and we must parse this
structure accordingly. Here we list the names of the top five repositories returned by
the search:

for item in response.json()['items'][:5]:
    printmd('**' + item['name'] + '**' + ': repository ' +
            item['text_matches'][0]['property'] + ' - \"*' +
            item['text_matches'][0]['fragment'] + '*\" matched with ' + '**' +
            item['text_matches'][0]['matches'][0]['text'] + '**')
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Out:

DataCamp: repository description - "DataCamp data-science courses" matched with
data

data-science-from-scratch: repository description - "code for Data Science From
Scratch book" matched with Data Science

data-science-blogs: repository description - "A curated list of data science
blogs" matched with data science

galaxy: repository description - "Data intensive science for everyone." matched
with Data

data-scientist-roadmap: repository description - "Tutorial coming with "data
science roadmap" graphe." matched with data science

We’ve seen how to make requests and parse the response. Let’s consider the use case
of monitoring the comments in a repository and ensuring that they adhere to com‐
munity guidelines. We will use the List Repository Issues endpoint for this. Here we
must specify the owner and the repository name to get all of the issue comments, and
the response will contain a list of all comments in that repository. Let’s make this
request for the PyTorch repository, which is a popular deep learning framework:

response = requests.get(
    'https://api.github.com/repos/pytorch/pytorch/issues/comments')
print('Response Code', response.status_code)
print('Number of comments', len(response.json()))

Out:

Response Code 200
Number of comments 30

While we see that the response has succeeded, the number of comments returned is
only 30. PyTorch is a popular framework with a lot of collaborators and users. Check‐
ing the issues page of the repository in a browser would show us that the number of
comments is much higher. So, what are we missing?

Pagination
This is a technique used by many APIs to limit the number of elements in the
response. The total number of comments in a repository can be large, and attempting
to respond with all of them would be time-intensive and costly. As a result, the Git‐
Hub API implements the pagination concept where it returns only one page at a time,
and in this case each page contains 30 results. The links field in the response object 
provides details on the number of pages in the response.

response.links

Out:
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{'next': {'url': 'https://api.github.com/repositories/65600975/issues/
comments?page=2',
  'rel': 'next'},
 'last': {'url': 'https://api.github.com/repositories/65600975/issues/
comments?page=1334',
  'rel': 'last'}}

The next field provides us with a URL to the next page, which would contain the next
30 results, while the last field provides a link to the last page, which provides an
indication of how many search results there are in total. The number of 30 results per
page is also specified in the documentation and usually can be configured up to a cer‐
tain maximum value. What does this mean for us? To get all the results, we must
implement a function that will parse all the results on one page and then call the next
URL until the last page has been reached. This is implemented as a recursive function
where we check to see if a next link exists and recursively call the same function. The
comments from each page are appended to the output_json object, which is finally
returned. To restrict the number of comments that we retrieve, we use a filter param‐
eter to fetch only the comments since July 2020. As per the documentation, the date
must be specified using the ISO 8601 format and provided as a parameter using the
since keyword:

def get_all_pages(url, params=None, headers=None):
    output_json = []
    response = requests.get(url, params=params, headers=headers)
    if response.status_code == 200:
        output_json = response.json()
        if 'next' in response.links:
            next_url = response.links['next']['url']
            if next_url is not None:
                output_json += get_all_pages(next_url, params, headers)
    return output_json

out = get_all_pages(
    "https://api.github.com/repos/pytorch/pytorch/issues/comments",
    params={
        'since': '2020-07-01T10:00:01Z',
        'sorted': 'created',
        'direction': 'desc'
    },
    headers={'Accept': 'application/vnd.github.v3+json'})
df = pd.DataFrame(out)

print (df['body'].count())
df[['id','created_at','body']].sample(1)

Out:

3870
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 id created_at body

2176 286601372 2017-03-15T00:09:46Z @soumith are you able to explain what dependency is broken? I can’t find the
PR you mentioned.

We have captured about 3,800 comments for the PyTorch repository by using the
recursive pagination function, and we saw an example of one of these comments in
the previous table. The dataset we have created here can be used to apply text analyt‐
ics blueprints, for example, to identify comments that do not adhere to community
guidelines and flag for moderation. It can also be augmented by running it at pro‐
grammed time intervals to ensure that latest comments are always captured.

Rate Limiting
One issue that you might have noticed while extracting the comments is that we were 
able to retrieve only 3,800 comments. However, the actual number of comments is
much more than that. This was a result of the API applying a rate limit. To ensure
that an API can continue serving all users and avoid load on their infrastructure, pro‐
viders will often enforce rate limits. The rate limit specifies how many requests can be
made to an endpoint in a certain time frame. GitHub’s Rate Limiting policy states the
following:

For unauthenticated requests, the rate limit allows for up to 60 requests per hour.
Unauthenticated requests are associated with the originating IP address, and not the
user making requests.

The information about usage is contained in the headers section of the response
object. We can make a call to the API to only retrieve the headers by using the head
method and then peering into the X-Ratelimit-Limit, X-Ratelimit-Remaining, and
X-RateLimit-Reset header elements:

response = requests.head(
    'https://api.github.com/repos/pytorch/pytorch/issues/comments')
print('X-Ratelimit-Limit', response.headers['X-Ratelimit-Limit'])
print('X-Ratelimit-Remaining', response.headers['X-Ratelimit-Remaining'])

# Converting UTC time to human-readable format
import datetime
print(
    'Rate Limits reset at',
    datetime.datetime.fromtimestamp(int(
        response.headers['X-RateLimit-Reset'])).strftime('%c'))

Out:

X-Ratelimit-Limit 60
X-Ratelimit-Remaining 0
Rate Limits reset at Sun Sep 20 12:46:18 2020
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X-Ratelimit-Limit indicates how many requests can be made per unit of time (one
hour in this case), X-Ratelimit-Remaining is the number of requests that can still be
made without violating the rate limits, and X-RateLimit-Reset indicates the time at
which the rate would be reset. It’s possible for different API endpoints to have differ‐
ent rate limits. For example, the GitHub Search API has a per-minute rate limit. If
you exceed the rate limit by making requests that exceed the rate limit, then the API
will respond with a status of 403.

While making API calls, we must honor the rate limits and also adjust the way we
make our calls to ensure that we do not overload the server. While extracting com‐
ments from the repository as in the previous example, we are allowed to make 60 API
calls every hour. We can make the requests one after the other, thereby quickly
exhausting the limit, which is how our earlier blueprint works. The function han
dle_rate_limits shown next slows down the requests to ensure they are spaced out
over the entire duration. It does so by distributing the remaining requests equally
over the remaining time by applying a sleep function. This will ensure that our data
extraction blueprint respects the rate limits and spaces the requests so that all the
requested data is downloaded:

from datetime import datetime
import time

def handle_rate_limits(response):
    now = datetime.now()
    reset_time = datetime.fromtimestamp(
        int(response.headers['X-RateLimit-Reset']))
    remaining_requests = response.headers['X-Ratelimit-Remaining']
    remaining_time = (reset_time - now).total_seconds()
    intervals = remaining_time / (1.0 + int(remaining_requests))
    print('Sleeping for', intervals)
    time.sleep(intervals)
    return True

Network communication including API calls can fail for several reasons, such as
interrupted connections, failed DNS lookups, connection timeouts, and so on. By
default, the requests library does not implement any retries, and therefore a nice
addition to our blueprint is an implementation of a retry strategy. This will allow API
calls to be retried in case of specified failure conditions. It can be implemented
with the HTTPAdapter library that allows more fine-grained control of the underlying
HTTP connections being made. Here we initialize an adapter with the retry strategy
that specifies five retries for a failed attempt. We also specify that these retries
should be made only when the error status codes 500, 503, and 504 are received. In
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1 Delay introduced between subsequent calls defined as time_delay={backoff factor} * (2 ** ({number of
total retries} - 1)).

addition, we specify the backoff_factor1 value that determines the exponentially
increasing time delay between attempts after the second try to ensure that we don’t
hammer the server.

Every request object creates a default Sessions object that manages and persists con‐
nection settings across different requests, such as cookies, authentication, and proxies
that should be stateless. Up to now we relied on the default Sessions object, but to
override the connection behavior with our retry strategy, we have to specify a custom
adapter that will enable us to use the retry strategy. This means that we will use the
new http Session object to make our requests, as shown in the following code:

from requests.adapters import HTTPAdapter
from requests.packages.urllib3.util.retry import Retry

retry_strategy = Retry(
    total=5,
    status_forcelist=[500, 503, 504],
    backoff_factor=1
)

retry_adapter = HTTPAdapter(max_retries=retry_strategy)

http = requests.Session()
http.mount("https://", retry_adapter)
http.mount("http://", retry_adapter)

response = http.get('https://api.github.com/search/repositories',
                   params={'q': 'data_science+language:python'})

for item in response.json()['items'][:5]:
    print (item['name'])

Out:

DataCamp
data-science-from-scratch
data-science-blogs
galaxy
data-scientist-roadmap

Putting all this together, we can modify the blueprint to handle pagination, rate lim‐
its, and retries as follows:

from requests.adapters import HTTPAdapter
from requests.packages.urllib3.util.retry import Retry

retry_strategy = Retry(
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    total=5,
    status_forcelist=[500, 503, 504],
    backoff_factor=1
)

retry_adapter = HTTPAdapter(max_retries=retry_strategy)

http = requests.Session()
http.mount("https://", retry_adapter)
http.mount("http://", retry_adapter)

def get_all_pages(url, param=None, header=None):
    output_json = []
    response = http.get(url, params=param, headers=header)
    if response.status_code == 200:
        output_json = response.json()
        if 'next' in response.links:
            next_url = response.links['next']['url']
            if (next_url is not None) and (handle_rate_limits(response)):
                output_json += get_all_pages(next_url, param, header)
    return output_json

If you look closely at the rate limit documentation, you will observe that there are 
different rate limits based on the type of authentication used. All our requests up to
now were unauthenticated requests, and the rate limits are much lower. We can iden‐
tify our data extraction application to GitHub by registering for an account. We can
then make authenticated requests to the API that increases the rate limits. This prac‐
tice ensures that there is no abuse of the API by unidentified users or fraudulent
applications, and most API providers do not allow access to an API without a form of
authentication.

This blueprint shows you how to extract data from any API using the simple Python
requests module and creating your own dataset. This is the fundamental way in
which most API requests work and is useful for a one-off analysis and initial explora‐
tion of a new data source. Going back to our use case, if you were looking to identify
the popular deep-learning frameworks for you to start learning, then this blueprint
would be a good choice. Or let’s say that your organization already has a sales fore‐
casting model and you would like to evaluate the benefit of adding financial market
news on the accuracy of this model. Assuming there is an API that provides financial
news, you can easily create a dataset, apply text analytics blueprints, and test the rele‐
vance to the model.
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Blueprint: Extracting Twitter Data with Tweepy
To make it easier for developers to work with their APIs, many of the pop‐
ular services provide packages in multiple programming languages or at

least have one or more community-supported modules. While the API is officially
supported, these packages are well-maintained Python modules that incorporate
additional functionality that makes them easy to use. This means you can focus on
the kind of data that you would like to extract rather than the technical details of
making API calls, authentication, and so on. In this blueprint, we will use one of the
community-developed and supported Python modules for Twitter called Tweepy.
Twitter maintains a list of libraries for different languages that includes several libra‐
ries for Python. We chose Tweepy because it’s actively maintained and used by many
researchers. While this blueprint uses Tweepy to extract data from the Twitter API,
the steps described would be similar for any other API.

We described earlier how you might use Twitter to analyze the effectiveness of a new
marketing campaign. Another use case could be to perform text analytics to under‐
stand the popularity and sentiment for cryptocurrencies as a way to predict their
adoption and value in the economy. Twitter is a social media network where users
spontaneously share short messages, often reacting in real time to world events such
as major calamities or popular sporting events. The user can also add the geolocation
if they want to, and this gives us the ability to understand the most trending current
events in a certain city or geographical area. During the government-imposed lock‐
downs due to COVID-19, several researchers used Twitter data to understand the
spread of the virus and the impact of lockdowns and also used these as predictive
variables of economic health.

Please note that when using a public API like Twitter, you will
retrieve data from the public timelines of many users, and it could
contain strong, maybe even offensive, language, including profani‐
ties. Please be aware of this and ensure that the data is handled
appropriately depending on your use-case.

Obtaining Credentials
The first step when working with any API is authenticating yourself or your applica‐
tion. Twitter requires all users of their API to register as a developer and provide
details for why they would like to use the API. This helps them identify you and pre‐
vent any unauthorized access. You must register yourself as a developer. If you do not
already have a Twitter account, then you will also be required to create one. You will
be asked about your purpose for creating a developer account and additional ques‐
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tions on how you intend to use the Twitter API. Figure 2-2 shows some examples of
these screens. Please provide detailed responses to ensure that Twitter fully under‐
stands your purpose for creating a developer account. For example, in this blueprint
we are looking to extract tweets using the API to illustrate how this is done. Since we
are only going to use the extraction capability, the question “Will your app use Tweet,
Retweet, like, follow, or Direct Message functionality?” is not applicable and can be
deselected. You must read and understand each question before proceeding. Note
that this requirement will be different for each API and is also subject to change.

Figure 2-2. Illustration of sign-up flow for creating a Twitter developer account.

Now that you have a developer account, the next step is to create an app. The creden‐
tials of the app are used when making API calls, and it’s important to specify the rea‐
son for creating the app. You have to provide details like the app name, the purpose
for creating the app, and the website URL that is associated with the app. If you will
use this app for research and learning purposes, then you could state this in the app
description and provide the URL for your university page or GitHub repository asso‐
ciated with your project. Once the app is approved by Twitter, you can navigate to the
tab Keys and tokens, as shown in Figure 2-3, where you will find the fields API key
and API secret key. Please note that these are the credentials that will be used for
authentication when making API calls, and it’s important to not reveal them.
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Figure 2-3. Creating a Twitter app and obtaining credentials.

Installing and Configuring Tweepy
The project repository for Tweepy and documentation are the best source for all
information about using Tweepy. We can install Tweepy by entering pip install
tweepy into the terminal. Next, we have to authenticate the app with the Twitter API,
and we do this with the help of the tweepy.AppAuthHandler module to which we pass
the API key and API secret key we obtained in the previous step. Finally, we instanti‐
ate the tweepy.API class, which will be used to make all subsequent calls to the Twit‐
ter API. Once the connection is made, we can confirm the host and version of the
API object. Please note that since we are interested in read-only access to public
information, we use application-only authentication:

import tweepy

app_api_key = 'YOUR_APP_KEY_HERE'
app_api_secret_key = 'YOUR_APP_SECRET_HERE'

auth = tweepy.AppAuthHandler(app_api_key, app_api_secret_key)
api = tweepy.API(auth)

print ('API Host', api.host)
print ('API Version', api.api_root)

Out:

API Host api.twitter.com
API Version /1.1

Extracting Data from the Search API
Let’s say we want to analyze the perception of cryptocurrency and determine its pop‐
ularity. We will use the Search API to retrieve all tweets that mention this to create
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our dataset. The Twitter API also uses pagination to return multiple pages of results,
but instead of implementing our own way of managing this, we will use the Cursor
object provided by the Tweepy library to iterate through the results. We pass the
search query to the API object and additionally specify the language of the tweets to
be extracted (English in this case). We choose to retrieve only 100 items and create a
DataFrame by loading the results as a JSON object:

search_term = 'cryptocurrency'

tweets = tweepy.Cursor(api.search,
                       q=search_term,
                       lang="en").items(100)

retrieved_tweets = [tweet._json for tweet in tweets]
df = pd.json_normalize(retrieved_tweets)

df[['text']].sample(3)

 text

59 Hi! I’ve been using OKEx which makes it really easy and safe to buy, sell, and store cryptocurrency (like Bitcoin).…
https://t.co/4m0mpyQTSN

17 Get connected today 📉 #getconnected #bitcointrading #Bitcoin #BitcoinCash #bitcoinmining #cryptocurrency https://
t.co/J60bCyFPUI

22 RT @stoinkies: We reached over 100 followers!\nGiveaway time!\nFOLLOW +RETWEET + LIKE THIS TWEET = Win 200
Dogecoin!\nEvery participant also g…

We have successfully completed the API call and can see the text of the retrieved
tweets in the previous table, which already show interesting aspects. For example, we
see the use of the word RT, which indicates a retweet (where the user has shared
another tweet). We see the usage of emojis, which is a strong characteristic of the
medium, and also notice that some tweets are truncated. Twitter actually imposes a
limit on the number of characters that each tweet can contain, which was originally
140 characters and later extended to 280. This led to the creation of an extended
tweet object, which we must specify explicitly while retrieving results in Tweepy.
Additionally, you must be aware that the standard version of the Twitter Search API
provides results only from the last week, and one must sign up for the Premium or
Enterprise versions for historical tweets.

For each endpoint, Twitter specifies a maximum value of count.
This is the maximum number of results that is returned in a single
page of the response. For example, the search endpoint specifies a
maximum value of count=100, whereas user_timeline has a maxi‐
mum value of count=200.
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Let’s expand our search to include an additional keyword relevant to the cryptocur‐
rency topic like crypto and filter out retweets for now. This is done by using the fil
ter keyword appended with a minus sign in the search term. We also specify that we
would like to fetch tweets with the tweet_mode=extended parameter, which ensures
that we retrieve the full text of all tweets. The Standard search API searches only a
sample of recent Tweets published in the past seven days, but even this could poten‐
tially be a large number, and to avoid a large wait time to run the blueprint, we
restrict ourselves to 12,000 tweets. We specify the parameter count=30, which is the
maximum number of tweets that can be retrieved in one call. Therefore, we must
make 400 such calls to obtain our dataset while taking into consideration the rate
limits. This is within the rate limit of 450 requests every 15 minutes specified by the
API. It’s possible that you might exceed this rate limit while experimenting with this
blueprint, and therefore we enable the automatic wait functionality provided
by Tweepy by setting the wait_on_rate_limit parameter. We also set
wait_on_rate_limit_notify so that we are notified of such wait times. If you are
within the rate limits, the following function should execute in about five minutes:

api = tweepy.API(auth,
                 wait_on_rate_limit=True,
                 wait_on_rate_limit_notify=True,
                 retry_count=5,
                 retry_delay=10)

search_term = 'cryptocurrency OR crypto -filter:retweets'

tweets = tweepy.Cursor(api.search,
                       q=search_term,
                       lang="en",
                       tweet_mode='extended',
                       count=30).items(12000)

retrieved_tweets = [tweet._json for tweet in tweets]

df = pd.json_normalize(retrieved_tweets)
print('Number of retrieved tweets ', len(df))
df[['created_at','full_text','entities.hashtags']].sample(2)

Out:

Number of retrieved tweets  12000

 created_at full_text entities.hashtags

10505 Sat Sep 19
22:30:12 +0000
2020

Milk was created to let liquidity providers (people who
have LP tokens) benefit because they can stake LP
tokens at SpaceSwap, they get MILK token as a reward
as well as 0.3% UniSwap commission.\n\n👇👇👇
\nhttps://t.co/M7sGbIDq4W\n#DeFi #cryptocurrency
#UniSwap #altcoin

[{'text’: ‘DeFi', ‘indices’: [224, 229]},
{'text’: ‘cryptocurrency', ‘indices’:
[230, 245]}, {'text’: ‘UniSwap',
‘indices’: [246, 254]}, {'text’: ‘altcoin',
‘indices’: [256, 264]}]
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 created_at full_text entities.hashtags

11882 Sat Sep 19
20:57:45 +0000
2020

You can EARN dividends from our curation activity. The
minimum to participate is 2000 #steem delegation...
with delegation there is no risk of losing your principal.
We can process the payout in #bitcoin and all major
#cryptocurrencies .. #cryptocurrency \nhttps://t.co/
4b3iH2AI4S

[{'text’: ’steem', ‘indices’: [86, 92]},
{'text’: ‘bitcoin', ‘indices’: [195, 203]},
{'text’: ‘cryptocurrencies', ‘indices’:
[218, 235]}, {'text’: ‘cryptocurrency',
‘indices’: [239, 254]}]

There is a lot of information that the API provides, as shown in the sample of two
previous tweets that contain important elements such as the date when the tweet was
sent out, the content of the tweet, and so on. Twitter also returns several entities such
as hashtags contained within the tweet, and it would be interesting to see which hash‐
tags are used heavily when discussing cryptocurrency:

def extract_entities(entity_list):
    entities = set()
    if len(entity_list) != 0:
        for item in entity_list:
            for key,value in item.items():
                if key == 'text':
                    entities.add(value.lower())
    return list(entities)

df['Entities'] = df['entities.hashtags'].apply(extract_entities)
pd.Series(np.concatenate(df['Entities'])).value_counts()[:25].plot(kind='barh')

The preceding code creates the graph shown in Figure 2-4, which shows us the
important hashtags being used in conjunction with cryptocurrencies. It includes
examples of cryptocurrencies such as bitcoin and ethereum as well as their trading
short-codes btc and eth. It also throws up related activities such as trading and air‐
drops. There are also mentions of entities like fintech and applecash. At a first glance,
it already gives you insight into the various terms and entities being discussed, and
the presence of trading short-codes indicates that there might be some market infor‐
mation contained in these tweets. While this is a simple count of entities, we can use
this dataset to apply more advanced text analytics techniques to determine popular
sentiment about cryptocurrencies that derive relationships between entities. Please
note that the results may differ depending on when the Twitter search was run and
the random selection by the API.
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Figure 2-4. Common hashtags used when discussing cryptocurrency.

Extracting Data from a User’s Timeline
Search is not the only way to interact with Twitter as we can use the API to also 
extract tweets by a specific user or account. This might be a person like a famous
celebrity or world leader, or it might be an organization like a sports team. For
instance, what if we would like to compare tweets from two popular Formula One
teams, Mercedes and Ferrari? We can extract all the tweets that they have sent out and
contrast their individual styles and the main themes that they focus on. We provide
the screen name for the account (MercedesAMGF1) to retrieve all the tweets sent by
this account:

api = tweepy.API(auth, wait_on_rate_limit=True, wait_on_rate_limit_notify=True)

tweets = tweepy.Cursor(api.user_timeline,
                       screen_name='MercedesAMGF1',
                       lang="en",
                       tweet_mode='extended',
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                       count=100).items(5000)

retrieved_tweets = [tweet._json for tweet in tweets]
df = pd.io.json.json_normalize(retrieved_tweets)
print ('Number of retrieved tweets ', len(df))

Out:

Number of retrieved tweets  3232

As you can see, though we requested 5,000 tweets, we were able to retrieve only about
3,200 of them. This is a restriction placed on the API. Let’s retrieve the tweets for the
Ferrari team as well using their screen name (ScuderiaFerrari):

def get_user_timeline(screen_name):
    api = tweepy.API(auth,
                     wait_on_rate_limit=True,
                     wait_on_rate_limit_notify=True)
    tweets = tweepy.Cursor(api.user_timeline,
                           screen_name=screen_name,
                           lang="en",
                           tweet_mode='extended',
                           count=200).items()
    retrieved_tweets = [tweet._json for tweet in tweets]
    df = pd.io.json.json_normalize(retrieved_tweets)
    df = df[~df['retweeted_status.id'].isna()]
    return df

df_mercedes = get_user_timeline('MercedesAMGF1')
print ('Number of Tweets from Mercedes', len(df_mercedes))
df_ferrari = get_user_timeline('ScuderiaFerrari')
print ('Number of Tweets from Ferrari', len(df_ferrari))

Out:

Number of Tweets from Mercedes 180
Number of Tweets from Ferrari 203

One of the quirks of the Tweepy implementation is that in the case
of retweets, the full_text column is truncated, and the retwee
ted_status.full_text column must be used to retrieve all the
characters of the tweet. For our use case, retweets are not impor‐
tant, and we filter them by checking if retweeted_status.id is
empty. However, depending on the use case, you can add a condi‐
tion to replace the column full_text with retweeted_sta

tus.full_text in the case of retweets.

When we remove retweets, the number of tweets authored by each team handle sig‐
nificantly drops. We will reuse the word cloud blueprint from Chapter 1 with the
function wordcloud to quickly visualize the tweets from each of the two teams and
identify the keywords they focus on. Mercedes tweets seem to focus a lot on the races
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that the team participates in, such as tuscangp, britishgp and race, day. The Ferrari
tweets, on the other hand, promote their merchandise, such as ferraristore, and driv‐
ers, such as enzofitti and schumachermick:

from blueprints.exploration import wordcloud

plt.figure()
wordcloud(df_mercedes['full_text'],
          max_words=100,
          stopwords=df_mercedes.head(5).index)

wordcloud(df_ferrari['full_text'],
          max_words=100,
          stopwords=df_ferrari.head(5).index)

Out:

Extracting Data from the Streaming API
Some APIs provide near real-time data, which might also be referred to as streaming
data. In such a scenario, the API would like to push the data to us rather than waiting
for a get request as we have been doing so far. An example of this is the Twitter
Streaming API. This API provides us with a sample of the tweets being sent out in
real time and can be filtered on several criteria. Since this is a continuous stream of
data, we have to handle the data extraction process in a different manner. Tweepy
already provides basic functionality in the StreamListener class that contains the
on_data function. This function is called each time a new tweet is pushed by the
streaming API, and we can customize it to implement logic that is specific to certain
use cases.

Staying with the cryptocurrency use case, let’s suppose that we want to have a contin‐
uously updated sentiment measure of different cryptocurrencies to make trading
decisions. In this case, we would track real-time tweets mentioning cryptocurrencies
and continuously update the popularity score. On the other hand, as researchers, we
might be interested in analyzing the reactions of users during key live events such as
the Super Bowl or announcement of election results. In such scenarios, we would lis‐
ten for the entire duration of the event and store the results for subsequent analysis.
To keep this blueprint generic, we have created the FileStreamListener class as
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shown next, which will manage all the actions to be taken on the stream of incoming
tweets. For every tweet pushed by the Twitter API, the on_data method is called. In
our implementation, we gather incoming tweets into batches of 100 and then write to
a file with the timestamp. The choice of 100 can be varied based on the memory avail‐
able on the system:

from datetime import datetime
import math

class FileStreamListener(tweepy.StreamListener):

    def __init__(self, max_tweets=math.inf):
        self.num_tweets = 0
        self.TWEETS_FILE_SIZE = 100
        self.num_files = 0
        self.tweets = []
        self.max_tweets = max_tweets

    def on_data(self, data):
        while (self.num_files * self.TWEETS_FILE_SIZE < self.max_tweets):
            self.tweets.append(json.loads(data))
            self.num_tweets += 1
            if (self.num_tweets < self.TWEETS_FILE_SIZE):
                return True
            else:
                filename = 'Tweets_' + str(datetime.now().time()) + '.txt'
                print (self.TWEETS_FILE_SIZE, 'Tweets saved to', filename)
                file = open(filename, "w")
                json.dump(self.tweets, file)
                file.close()
                self.num_files += 1
                self.tweets = []
                self.num_tweets = 0
                return True
        return False

    def on_error(self, status_code):
        if status_code == 420:
            print ('Too many requests were made, please stagger requests')
            return False
        else:
            print ('Error {}'.format(status_code))
            return False

To get access to the streaming API, the basic app authentication is not enough. We
must also provide the user authentication, which can be found on the same page as
shown before. This means that the Streaming API requests are made by the app we
created on behalf of the user (in this case our own account). This also means that we
have to use the OAuthHandler class instead of the AppAuthHandler that we used up
to now:
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user_access_token = 'YOUR_USER_ACCESS_TOKEN_HERE'
user_access_secret = 'YOUR_USER_ACCESS_SECRET_HERE'

auth = tweepy.OAuthHandler(app_api_key, app_api_secret_key)
auth.set_access_token(user_access_token, user_access_secret)
api = tweepy.API(auth, wait_on_rate_limit=True, wait_on_rate_limit_notify=True)

When initializing an object of FileStreamListener, we also specify the maximum
number of tweets that we would like to extract. This acts like a stopping condition,
and if not specified, the process will run as long as it is not terminated by the user or
stopped due to a server error. We initialize the Twitter stream by passing in the
authentication object (api.auth) and the object that will manage the stream (file
StreamListener). We also ask for the extended tweets to be provided. Once this is
done, we can start tracking live tweets from the stream using the filter function and
providing keywords that we would like to track:

fileStreamListener = FileStreamListener(5000)
fileStream = tweepy.Stream(auth=api.auth,
                           listener=fileStreamListener,
                           tweet_mode='extended')
fileStream.filter(track=['cryptocurrency'])

If you would like to run the extractor in a separate thread, you can pass the keyword
async=True to the filter function, and this will run continuously in a separate thread.
Once it has run for some time and stored tweets, we can read this into a Pandas
DataFrame as before. When an error occurs, the FileStreamListener does not
attempt retries but only prints the error status_code. You are encouraged to imple‐
ment failure handling and customize the on_data method to suit the use case.

These blueprints only provide guidance on accessing popular APIs for data extrac‐
tion. Since each API is different, the functionality provided by the corresponding
Python module will also be different. For instance, Wikipedia is another popular
source for extracting text data, and wikipediaapi is one of the supported Python
modules for extracting this data. It can be installed by using the command pip
install wikipediaapi, and since this is a publicly available data source, the authen‐
tication and generation of access tokens is not necessary. You only need to specify the
version of Wikipedia (language) and the topic name for which you want to extract
data. The following code snippet shows the steps to download the Wikipedia entry
for “Cryptocurrency” and shows the initial few lines of this article:

import wikipediaapi

wiki_wiki = wikipediaapi.Wikipedia(
        language='en',
        extract_format=wikipediaapi.ExtractFormat.WIKI
)
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p_wiki = wiki_wiki.page('Cryptocurrency')
print (p_wiki.text[:200], '....')

Out:

A cryptocurrency (or crypto currency) is a digital asset designed to work
as a medium of exchange wherein individual coin ownership records are stored
in a ledger existing in a form of computerized da ....

Closing Remarks
In this chapter, we first introduced blueprints that make use of the Python requests
library to make API calls and extract data. We also introduced ways to work with
paginated results, rate limits, and retries. These blueprints work for any kind of API
and are great if you would like to control and customize several aspects for your data
extraction. In the next set of blueprints, we used Tweepy to extract data from the
Twitter API. This is an example of a community-developed Python library that sup‐
ports a popular API and provides tested functionality out of the box. You often don’t
have to worry about implementing your own pagination or backoff strategy and is
therefore one less thing to worry about. If your use case needs to get data from a pop‐
ular API, then it is convenient to use such a preexisting package.
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CHAPTER 3

Scraping Websites and Extracting Data

Often, it will happen that you visit a website and find the content interesting. If there
are only a few pages, it’s possible to read everything on your own. But as soon as there
is a considerable amount of content, reading everything on your own will not be
possible.

To use the powerful text analytics blueprints described in this book, you have to
acquire the content first. Most websites won’t have a “download all content” button,
so we have to find a clever way to download (“scrape”) the pages.

Usually we are mainly interested in the content part of each individual web page, less
so in navigation, etc. As soon as we have the data locally available, we can use power‐
ful extraction techniques to dissect the pages into elements such as title, content, and
also some meta-information (publication date, author, and so on).

What You’ll Learn and What We’ll Build
In this chapter, we will show you how to acquire HTML data from websites and use
powerful tools to extract the content from these HTML files. We will show this with
content from one specific data source, the Reuters news archive.

In the first step, we will download single HTML files and extract data from each one
with different methods.

Normally, you will not be interested in single pages. Therefore, we will build a blue‐
print solution. We will download and analyze a news archive page (which contains
links to all articles). After completing this, we know the URLs of the referred docu‐
ments. Then you can download the documents at the URLs and extract their content
to a Pandas DataFrame.
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After studying this chapter, you will have a good overview of methods that download
HTML and extract data. You will be familiar with the different extraction methods for
content provided by Python. We will have seen a complete example for downloading
and extracting data. For your own work, you will be able to select an appropriate
framework. In this chapter, we will provide standard blueprints for extracting often-
used elements that you can reuse.

Scraping and Data Extraction
Scraping websites is a complex process consisting of typically three different phases,
as illustrated in Figure 3-1.

Figure 3-1. Outline of scraping process.

In the first step, we have to generate all interesting URLs of a website. Afterward, we
can use different tools to download the pages from the corresponding URLs. Finally,
we will extract the “net” data from the downloaded pages; we can also use different
strategies in this phase. Of course, it is crucial to permanently save extracted data.
In this chapter, we use a Pandas DataFrame that offers a variety of persistence
mechanisms.

Scraping Is Not Always Necessary: Sources for Existing Datasets
Often, datasets are already available, and you can download them as a whole. This 
might be special datasets that have a focus on specific content or use cases. If you are
interested in sentiment detection, both the comment dataset from the Internet Movie
Database and the Rotten Tomatoes dataset for movies are used quite frequently. Using
more structured data, the Yelp dataset contains both text and metadata.

Apart from these domain-specific datasets, there more generic ones like Common
Crawl. To generate this, almost each month, parts of the whole Internet are crawled
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and stored. For compression purposes, data is stored in a special format called
WARC. The dataset is really huge, containing roughly two billion web pages. You can
freely download the archive or access it directly via an S3 bucket on Amazon Web
Services (AWS).

For experimenting, one of the simplest and directly accessible datasets is the so-called 
newsgroups dataset, which is directly built into scikit-learn. Although it is quite
dated, it is useful to have a dataset for immediate experimentation without having to
download and transform anything.

As we want to show how to download and extract HTML content from the Internet
in this chapter, these existing datasets will not be used.

Introducing the Reuters News Archive
Let’s assume we are interested in analyzing the current and past political situation and
are looking for an appropriate dataset. We want to find some trends, uncover when a
word or topic was introduced for the first time, and so on. For this, our aim is to con‐
vert the documents to a Pandas DataFrame.

Obviously, news headlines and articles are well suited as a database for these require‐
ments. If possible, we should find an archive that goes back a few years, ideally even
some decades.

Some newspapers have such archives, but most of them will also have a certain politi‐
cal bias that we want to avoid if possible. We are looking for content that is as neutral
as possible.

This is why we decided to use the Reuters news archive. Reuters is an international
news organization and works as a news agency; in other words, it provides news to
many different publications. It was founded more than a hundred years ago and has a
lot of news articles in its archives. It’s a good source of content for many reasons:

• It is politically neutral.
• It has a big archive of news.
• News articles are categorized in sections.
• The focus is not on a specific region.
• Almost everybody will find some interesting headlines there.
• It has a liberal policy for downloading data.
• It is very well connected, and the website itself is fast.
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Searching for Data
If we are interested in news, using the archive of a large newspaper or news agency is
an obvious solution. Sometimes, however, finding appropriate content is not easy.
Let’s assume we are interested in diggers and want to download content for that. As
we do not know which websites carry the corresponding content, we have to find
them first.

Fortunately, today’s internet search engines use extremely sophisticated algorithms
and yield good results when you provide them with specific search queries. If data is
(openly) available on the web, search engines will almost certainly be able to find it.
One of the most difficult parts of searching for data is knowing which search terms
to use.

Running various search terms across different search engines, we can use statistics (or
more sophisticated methods) to find the most relevant websites. This requires the
repetition of many search requests and counting the number of results. APIs are help‐
ful for running these searches and are available for the big search engines (like Google
and Bing).

After finding a useful data source, you must check its number of pages. Search
engines can also help in this case, by using specialized idioms as your search term:

• Use site:domain to restrict searches to a single domain.
• In more specific cases, inurl:/path/ can also be helpful, but the syntax differs

among different search engines.
• The approaches can be combined; let’s assume you want to search for Python

articles with NumPy in the URL and compare stackoverflow.com with
quora.com. The corresponding search terms would be site:quora.com python
inurl:numpy versus site:stackoverflow.com python inurl:numpy.

• More information is available at the help pages of the search engines, such as
Google’s Programmable Search Engine page.

Note that search engines are built for interactive operations. If you perform too many
(automated) searches, the engines will start sending captchas and eventually block
you.
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URL Generation
For downloading content from the Reuters’ archive, we need to know the URLs of the
content pages. After we know the URLs, the download itself is easy as there are pow‐
erful Python tools available to accomplish that.

At first sight it might seem easy to find URLs, but in practice it is often not so simple.
The process is called URL generation, and in many crawling projects it is one of the
most difficult tasks. We have to make sure that we do not systematically miss URLs;
therefore, thinking carefully about the process in the beginning is crucial. Performed
correctly, URL generation can also be a tremendous time-saver.

Before You Download

Be careful: sometimes downloading data is illegal. The rules and
legal situation might depend on the country where the data is hos‐
ted and into which country it is downloaded. Often, websites have
a page called “terms of use” or something similar that might be
worth taking a look at.
If data is saved only temporarily, the same rules for search engines
might apply. As search engines like Google cannot read and under‐
stand the terms of use of every single page they index, there is a
really old protocol called the robots exclusion standard. Websites
using this have a file called robots.txt at the top level. This file can
be downloaded and interpreted automatically. For single websites,
it is also possible to read it manually and interpret the data. The
rule of thumb is that if there is no Disallow: *, you should be
allowed to download and (temporarily) save the content.

There are many different possibilities:

Crawling
Start on the home page (or a section) of the website and download all links on
the same website. Crawling might take some time.

URL generators
Writing a URL generator is a slightly more sophisticated solution. This is most
suitable for use on hierarchically organized content like forums, blogs, etc.

Search engines
Ask search engines for specific URLs and download only these specific URLs.

Sitemaps
A standard called sitemap.xml, which was originally conceived for search engines,
is an interesting alternative. A file called sitemap.xml contains a list of all pages on
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a website (or references to sub-sitemaps). Contrary to robots.txt, the filename is
not fixed and can sometimes be found in robots.txt itself. The best guess is to look
for sitemap.xml on the top level of a website.

RSS
The RSS format was originally conceived for newsfeeds and is still in wide use for
subscribing to frequently changing content sources. It works via XML files and
does not only contain URLs but also document titles and sometimes summaries
of articles.

Specialized programs
Downloading data from social networks and similar content is often simplified
by using specialized programs that are available on GitHub (such as Facebook
Chat Downloader for Facebook Chats, Instaloader for Instagram, and so on).

In the following sections, we focus on robots.txt, sitemaps.xml, and RSS feeds. Later in
the chapter, we show a multistage download that uses URL generators.

Note: Use an API for Downloading Data If It’s Available

Instead of generating the URLs, downloading the content, and
extracting it, using an API is much easier and more stable. You will
find more information about that in Chapter 2.

Blueprint: Downloading and Interpreting
robots.txt
Finding the content on a website is often not so easy. To see the techni‐

ques mentioned earlier in action, we’ll take a look at the Reuters news archive. Of
course, (almost) any other website will work in a similar fashion.

As discussed, robots.txt is a good starting point:

# robots_allow.txt for www.reuters.com
# Disallow: /*/key-developments/article/*

User-agent: *
Disallow: /finance/stocks/option
[...]
Disallow: /news/archive/commentary

SITEMAP: https://www.reuters.com/sitemap_index.xml
SITEMAP: https://www.reuters.com/sitemap_news_index.xml
SITEMAP: https://www.reuters.com/sitemap_video_index.xml
SITEMAP: https://www.reuters.com/sitemap_market_index.xml
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1 Reuters is a news website and changes daily. Therefore, expect completely different results when running the
code!

SITEMAP: https://www.reuters.com/brandfeature/sitemap

User-agent: Pipl
Disallow: /
[...]

Some user agents are not allowed to download anything, but the rest may do that. We
can check that programmatically in Python:

import urllib.robotparser
rp = urllib.robotparser.RobotFileParser()
rp.set_url("https://www.reuters.com/robots.txt")
rp.read()
rp.can_fetch("*", "https://www.reuters.com/sitemap.xml")

Out:

True

Blueprint: Finding URLs from sitemap.xml
Reuters is even nice enough to mention the URLs of the sitemap for the
news, which actually contains only a reference to other sitemap files. Let’s

download that. An excerpt at the time of writing looks like this:1

[...]
<url>
  <loc>https://www.reuters.com/article/
us-health-vaping-marijuana-idUSKBN1WG4KT</loc>
  <news:news>
    <news:publication>
      <news:name>Reuters</news:name>
      <news:language>eng</news:language>
    </news:publication>
    <news:publication_date>2019-10-01T08:37:37+00:00</news:publication_date>
    <news:title>Banned in Boston: Without vaping, medical marijuana patients
               must adapt</news:title>
    <news:keywords>Headlines,Credit RSS</news:keywords>
  </news:news>
</url>
[...]
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2 You might have to install the package first with pip install xmltodict.
3 Reuters is a news site, and the content is continually updated. Note that your results will definitely be

different!

The most interesting part is the line with <loc>, as it contains the URL of the article.
Filtering out all these <loc> lines leads to a list of URLs for news articles that can be
downloaded afterward.

As Python has an incredibly rich ecosystem of libraries, it’s not hard to find a sitemap
parser. There are several available, such as ultimate-sitemap-parser. However, this
parser downloads the whole sitemap hierarchy, which is a bit too sophisticated for us
as we just want the URLs.

It’s easy to convert sitemap.xml to an associative array (hash) that is called a dict in
Python:2

import xmltodict
import requests

sitemap = xmltodict.parse(requests.get(
          'https://www.reuters.com/sitemap_news_index1.xml').text)

Let’s check what is in the dict before actually downloading the files3:

urls = [url["loc"] for url in sitemap["urlset"]["url"]]
# just print the first few URLs to avoid using too much space
print("\n".join(urls[0:3))

Out:

https://www.reuters.com/article/us-japan-fukushima/ex-tepco-bosses-cleared-
over-fukushima-nuclear-disaster-idUSKBN1W40CP
https://www.reuters.com/article/us-global-oil/oil-prices-rise-as-saudi-supply-
risks-come-into-focus-idUSKBN1W405X
https://www.reuters.com/article/us-saudi-aramco/iran-warns-against-war-as-us-
and-saudi-weigh-response-to-oil-attack-idUSKBN1W40VN

We will use this list of URLs in the following section and download their content.
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4 Just after the time of writing, Reuters stopped providing RSS feeds, which led to a public outcry. We hope that
RSS feeds will be restored. The Jupyter notebook for this chapter on GitHub uses an archived version of the
RSS feed from the Internet archive.

5 As stated previously, Reuters is a dynamically generated website, and your results will be different!

Blueprint: Finding URLs from RSS
As Reuters is a news website, it also offers access to its articles via an RSS
feed. Several years ago, browsers would show an RSS icon next to the

URL if you could subscribe to this source. While those days are gone, it is still not too
difficult to find the URLs for RSS feeds. At the bottom of the website, we can see a
line with navigation icons, as shown in Figure 3-2.

Figure 3-2. Part of the Reuters website that links to the RSS feed.

The icon that looks like a WIFI indicator is the link to the RSS feeds page. Often (and
sometimes more easily) this can be found by taking a look at the source code of the
corresponding webpage and searching for RSS.

The world news RSS feed has the URL http://feeds.reuters.com/Reuters/worldNews4

and can easily be parsed in Python, as follows:

import feedparser
feed = feedparser.parse('http://feeds.reuters.com/Reuters/worldNews')

The individual format of the RSS file might differ from site to site. However, most of
the time we will find title and link as fields5:

[(e.title, e.link) for e in feed.entries]

Out:

[('Cambodian police search for British woman, 21, missing from beach',
  'http://feeds.reuters.com/~r/Reuters/worldNews/~3/xq6Hy6R9lxo/cambodian-
police-search-for-british-woman-21-missing-from-beach-idUSKBN1X70HX'),
 ('Killing the leader may not be enough to stamp out Islamic State',
  'http://feeds.reuters.com/~r/Reuters/worldNews/~3/jbDXkbcQFPA/killing-the-
leader-may-not-be-enough-to-stamp-out-islamic-state-idUSKBN1X7203'), [...]
]

In our case, we are more interested in the “real” URLs, which are contained in the id
field:

[e.id for e in feed.entries]
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Out:

['https://www.reuters.com/article/us-cambodia-britain-tourist/cambodian-
police-search-for-british-woman-21-missing-from-beach-
idUSKBN1X70HX?feedType=RSS&feedName=worldNews',
 'https://www.reuters.com/article/us-mideast-crisis-baghdadi-future-analys/
killing-the-leader-may-not-be-enough-to-stamp-out-islamic-state-
idUSKBN1X7203?feedType=RSS&feedName=worldNews',
 'https://www.reuters.com/article/us-britain-eu/eu-approves-brexit-delay-
until-january-31-as-pm-johnson-pursues-election-
idUSKBN1X70NT?feedType=RSS&feedName=worldNews', [...]
]

Great, we have found an alternative way to get a list of URLs that can be used when
no sitemap.xml is available.

Sometimes you will still encounter so-called Atom feeds, which basically offer the
same information as RSS in a different format.

If you wanted to implement a website monitoring tool, taking a periodic look at Reu‐
ters news (or other news sources) or RSS (or Atom) would be a good way to go ahead.

If you are interested in whole websites, looking for sitemap.xml is an excellent idea.
Sometimes it might be difficult to find (hints might be in robots.txt), but it is almost
always worth the extra effort to find it.

If you cannot find sitemap.xml and you plan to regularly download content, going for
RSS is a good second choice.

Whenever possible, try to avoid crawling websites for URLs. The process is largely
uncontrollable, can take a long time, and might yield incomplete results.

Downloading Data
At first sight, downloading data might seem like the most difficult and time-
consuming part of the scraping process. Often, that’s not true as you can accomplish
it in a highly standardized way.

In this section, we show different methods for downloading data, both with Python
libraries and external tools. Especially for big projects, using external programs has
some advantages.

Compared to several years ago, the Internet is much faster today. Big websites have
reacted to this development by using content-delivery networks, which can speed
them up by orders of magnitude. This helps us a lot as the actual downloading pro‐
cess is not as slow as it used to be but is more or less limited by our own bandwidth.
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Tips for Efficient Downloads
The following strategies will help you download websites efficiently:

Compression
HTML normally is very verbose and can easily be compressed by several factors.
To save bandwidth, a download program supporting gzip compression (deflate
or brotli is also possible) will save considerable bandwidth and time.

Content distribution networks (CDNs)
Cloud servers like AWS have an immensely powerful connection to the internet.
To avoid overloading servers, parallel downloads should be used carefully. Defi‐
nitely work with a “grace period” and wait some time between requests. To make
the traffic look more human (and avoid automatic exclusions from the servers),
randomizing this period is often a good idea.

Keep alive
For the past few years, most servers have begun using the HTTPS/TLS protocol
for secure data transmission. The handshake of the protocol is quite complicated.
It includes checking public/private keys and creating a symmetric session key
before the actual encrypted transmission can start (Diffie-Hellman key
exchange).

Browsers are quite clever and have a special cache for this session key. When
looking for a dedicated download program, choose one that also has such a
cache. To achieve even smaller latencies, HTTP keep-alive can be used to recycle
TCP connections. The Python requests library supports this functionality using
the Session abstraction.

Save files
In many projects, it has proven useful to save the downloaded HTML pages
(temporarily) in the filesystem. Of course, the structured content can be extrac‐
ted on the fly, but if something goes wrong or pages have a different structure
than expected, it will be hard to find and debug. This is extremely useful, espe‐
cially during development.

Start simple
In most blueprints, requests is well-suited for downloading pages. It offers a
decent interface and works in Python environments.

Avoid getting banned
Most websites are not keen on getting scraped, and quite a few have implemented
countermeasures. Be polite and add a grace period between requests if you plan
to download many pages.
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If you get banned anyway, you should actively notice this by checking the content
and the response code. Changing IP addresses or using using IPv6, proxy servers,
VPNs, or even the Tor network are possible options then.

Legal aspects
Depending on where you live and the terms of use of a website, scraping might
not be allowed at all.

Blueprint: Downloading HTML Pages with Python
To download HTML pages, it’s necessary to know the URLs. As we have
seen, the URLs are contained in the sitemap. Let’s use this list to download

the content:

%%time
s = requests.Session()
for url in urls[0:10]:
    # get the part after the last / in URL and use as filename
    file = url.split("/")[-1]
    
    r = s.get(url)
    if r.ok:
        with open(file, "w+b") as f:
            f.write(r.text.encode('utf-8'))
    else:
        print("error with URL %s" % url)

Out:

CPU times: user 117 ms, sys: 7.71 ms, total: 124 ms
Wall time: 314 ms

Depending on your Internet connection, it might take longer, but that was quite fast.
Using the session abstraction, we make sure to have maximum speed by leveraging
keep-alive, SSL session caching, and so on.

Use Proper Error Handling When Downloading URLs

When downloading URLs, you are using a network protocol to
communicate with remote servers. There are many kinds of errors
that can happen, such as changed URLs, servers not responding,
etc. The example just shows an error message; in real life, your sol‐
ution should probably be more sophisticated.
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Blueprint: Downloading HTML Pages with wget
A good tool for mass downloading pages is wget, which is a command
line tool available for almost all platforms. On Linux and macOS, wget

should already be installed or can easily be installed using a package manager. On
Windows, there is a port available at https://oreil.ly/2Nl0b.

wget supports lists of URLs for downloads and HTTP keep-alive. Normally, each
HTTP request needs a separate TCP connection (or a Diffie-Hellman key exchange;
see “Tips for Efficient Downloads” on page 67). The -nc option of wget will check
whether files have already been downloaded. This way, we can avoid downloading
content twice. We can now stop the process at any time and restart without losing
data, which is important if a web server blocks us, our Internet connection goes
down, etc. Let’s save the list of URLs from the last blueprint to a file and use that as a
template for downloading:

with open("urls.txt", "w+b") as f:
    f.write("\n".join(urls).encode('utf-8'))

Now go to your command line (or a terminal tab in Jupyter) and call wget:

wget -nc -i urls.txt

The -i option tells wget the list of URLs to download. It’s fun to see how wget skips
the existing files (due to the -nc option) and how fast the downloading works.

wget can also be used for recursively downloading websites with the option -r.

Danger of Lockout!

Be careful, this might lead to long-running processes, and eventu‐
ally you might get locked out of the website. It’s often a good idea
to combine -r with -l (recursion level) when experimenting with
recursive downloads.

There are several different ways to download data. For a moderate number of pages
(like a few hundred to a thousand), a download directly in a Python program is the
standard way to go. We recommend the requests library, as it is easy to use.

Downloading more than a few thousand pages normally works better in a multistage
process by first generating a list of URLs and then downloading them externally via a
dedicated program like wget.
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Extracting Semistructured Data
In the following section, we will explore different methods to extract data from Reu‐
ters articles. We will start with using regular expressions and then turn to a full-
fledged HTML parser.

Eventually we will be interested in the data of more than one article, but as a first step
we will concentrate on a single one. Let’s take “Banned in Boston: Without vaping,
medical marijuana patients must adapt” as our example.

Blueprint: Extracting Data with Regular
Expressions
The browser will be one of the most important tools for dissecting the

article. Start by opening the URL and using the View Source functionality. In the first
step, we can see that the title is interesting. Taking a look at the HTML, the title is
surrounded by both <title> and <h1>.

[...]
<title>Banned in Boston: Without vaping, medical marijuana patients
must adapt - Reuters</title>
[...]
<h1 class="ArticleHeader_headline">Banned in Boston: Without vaping,
medical marijuana patients must adapt</h1>
[...]

HTML Code Changes Over Time

The programs described in this section work with the HTML code
that was current when the book was written. However, publishers
are free to change their website structure anytime and even remove
content. An alternative is to use the data from the Wayback
Machine. The Reuters website is mirrored there, and snapshots are
kept that preserve the layout and the HTML structure.
Also take a look at the GitHub archive of the book. If the layout has
changed and the programs would not work anymore, alternative
links (and sitemaps) will be provided there.

Programmatically, the extraction of the title can be achieved with regular expressions
without using any other libraries. Let’s first download the article and save it to a local
file called us-health-vaping-marijuana-idUSKBN1WG4KT.html.
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6 HTML cannot be parsed with regular expressions.

import requests

url = 'https://www.reuters.com/article/us-health-vaping-marijuana-idUSKBN1WG4KT'

# use the part after the last / as filename
file = url.split("/")[-1] + ".html"
r = requests.get(url)
with open(file, "w+b") as f:
    f.write(r.text.encode('utf-8'))

A Python blueprint for extracting the title might look like this:

import re

with open(file, "r") as f:
  html = f.read()
  g = re.search(r'<title>(.*)</title>', html, re.MULTILINE|re.DOTALL)
  if g:
    print(g.groups()[0])

Out:

Banned in Boston: Without vaping, medical marijuana patients must adapt - Reuters

The re library is not fully integrated into Python string handling. In other words, it
cannot be invoked as methods of string. As our HTML documents consist of many
lines, we have to use re.MULTILINE|re.DOTALL. Sometimes cascaded calls to
re.search are necessary, but they do make the code harder to read.

It is crucial to use re.search and not re.match in Python, which is different than in
many other programming languages. The latter tries to match the whole string, and
as there is data before <title> and after </title>, it fails.

Blueprint: Using an HTML Parser for Extraction
The article has more interesting parts that are tedious to extract with reg‐
ular expressions. There’s text in the article, a publication date is associated

with it, and the authors are named. This is much easier to accomplish with an HTML
parser.6 Fortunately, with the Python package called Beautiful Soup, we have an
extremely powerful library for handling this. If you don’t have Beautiful Soup
installed, install it now with pip install bs4 or conda install bs4. Beautiful Soup
is tolerant and can also parse “bad” HTML that is often found on sloppily managed
websites.
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7 See CSS: The Definitive Guide, 4th Edition by Eric A. Meyer and Estelle Weyl (O’Reilly, 2017)

The next sections make use of the fact that all articles have the same structure in the
news archive. Fortunately, this is true for most big websites as the pages are not hand-
crafted but rather generated by a content management system from a database.

Extracting the title/headline
Selecting content in Beautiful Soup uses so-called selectors that need to be given in
the Python program. Finding them is a bit tricky, but there are structural approaches
for that. Almost all modern browsers support a Web Inspector, which is useful for
finding the CSS selectors. Open the Web Inspector in the browser (most commonly
achieved by pressing F12) when the article is loaded, and click the Web Inspector
icon, as shown in Figure 3-3.

Figure 3-3. Web Inspector icon in the Chrome browser.

Hover over the headline and you will see the corresponding element highlighted, as
shown in Figure 3-4.

Figure 3-4. Chrome browser using the Web Inspector.

Clicking the headline to show it in the Web Inspector. It should look like this:

<h1 class="ArticleHeader_headline">Banned in Boston: Without vaping, medical
marijuana patients must adapt</h1>

Using CSS notation,7 this element can be selected with h1.ArticleHeader_headline.
Beautiful Soup understands that:

from bs4 import Beautiful Soup
soup = Beautiful Soup(html, 'html.parser')
soup.select("h1.ArticleHeader_headline")

Out:

[<h1 class="ArticleHeader_headline">Banned in Boston: Without vaping, medical
marijuana patients must adapt</h1>]
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Beautiful Soup makes it even easier and lets us use the tag names directly:

soup.h1

Out:

<h1 class="ArticleHeader_headline">Banned in Boston: Without vaping, medical
marijuana patients must adapt</h1>

Normally, the most interesting part of the previous HTML fragment is the real text
without the HTML clutter around it. Beautiful Soup can extract that:

soup.h1.text

Out:

'Banned in Boston: Without vaping, medical marijuana patients must adapt'

Note that in contrast to the regular expression solution, unnecessary whitespaces
have been stripped by Beautiful Soup.

Unfortunately, that does not work as well for the title:

soup.title.text

Out:

'\n                Banned in Boston: Without vaping, medical marijuana patients
must adapt - Reuters'

Here, we would need to manually strip the data and eliminate the - Reuters suffix.

Extracting the article text
In a similar way to the previously described procedure for finding the headline selec‐
tor, you can easily find the text content at the selector div.StandardArticle
Body_body. When using select, Beautiful Soup returns a list. Often it is clear from
the underlying HTML structure that the list consists of only one item or we are inter‐
ested only in the first element. We can use the convenience method select_one here:

soup.select_one("div.StandardArticleBody_body").text

Out:

"WASHINGTON (Reuters) - In the first few days of the four-month ban [...]"

Extracting image captions
But wait, apart from the text, this part also contains images with captions that might
be relevant separately. So again, use the Web Inspector to hover over the images and
find the corresponding CSS selectors. All images are contained in <figure> elements,
so let’s select them:

soup.select("div.StandardArticleBody_body figure img")
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Out:

[<img aria-label="FILE PHOTO: An employee puts down an eighth of an ounce
  marijuana after letting a customer smell it outside the Magnolia cannabis
  lounge in Oakland, California, U.S. April 20, 2018. REUTERS/Elijah Nouvelage"
  src="//s3.reutersmedia.net/resources/r/
  ?m=02&amp;d=20191001&amp;t=2&amp;i=1435991144&amp;r=LYNXMPEF90
  39L&amp;w=20"/>, <img src="//s3.reutersmedia.net/resources/r/
  ?m=02&amp;d=20191001&amp;t=2&amp;i=1435991145&amp;r=LYNXMPEF90
  39M"/>]

Inspecting the result closely, this code contains only one image, whereas the browser
displays many images. This is a pattern that can often be found in web pages. Code
for the images is not in the page itself but is added later by client-side JavaScript.
Technically this is possible, although it is not the best style. From a content perspec‐
tive, it would be better if the image source were contained in the original server-
generated page and made visible by CSS later. This would also help our extraction
process.  Anyway, we are more interested in the caption of the image, so the correct
selector would be to replace img with figcaption.

soup.select("div.StandardArticleBody_body figcaption")

Out:

[<figcaption><div class="Image_caption"><span>FILE PHOTO:
  An employee puts down an eighth of an ounce marijuana after letting a
  customer smell it outside the Magnolia cannabis lounge in Oakland,
  California, U.S. April 20, 2018. REUTERS/Elijah Nouvelage</span></
  div></figcaption>,

 <figcaption class="Slideshow_caption">Slideshow<span class="Slideshow_count">
  (2 Images)</span></figcaption>]

Extracting the URL
When downloading many HTML files, it is often difficult to find the original URLs of
the files if they have not been saved separately. Moreover, URLs might change, and
normally it is best to use the standard (called canonical) URL. Fortunately, there is an
HTML tag called <link rel="canonical"> that can be used for this purpose. The tag
is not mandatory, but it is extremely common, as it is also taken into account by
search engines and contributes to a good ranking:

soup.find("link", {'rel': 'canonical'})['href']

Out:

'https://www.reuters.com/article/us-health-vaping-marijuana-idUSKBN1WG4KT'
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Extracting list information (authors)

Taking a look at the source code, the author of the article is mentioned in a <meta
name="Author"> tag.

soup.find("meta", {'name': 'Author'})['content']

Out:

'Jacqueline Tempera'

However, this returns only one author. Reading the text, there is another author,
which is unfortunately not contained in the meta-information of the page. Of course,
it can be extracted again by selecting the elements in the browser and using the CSS
selector:

sel = "div.BylineBar_first-container.ArticleHeader_byline-bar \
      div.BylineBar_byline span"
soup.select(sel)

Out:

[<span><a href="/journalists/jacqueline-tempera" target="_blank">
  Jacqueline Tempera</a>, </span>,
 <span><a href="/journalists/jonathan-allen" target="_blank">
  Jonathan Allen</a></span>]

Extracting the author names is then straightforward:

[a.text for a in soup.select(sel)]

Out:

['Jacqueline Tempera, ', 'Jonathan Allen']

Semantic and nonsemantic content

In contrast to the previous examples, the sel selector is not semantic. Selection is per‐
formed based on layout-like classes. This works well for the moment but is likely to
break if the layout is changed. Therefore, it’s a good idea to avoid these kinds of selec‐
tions if the code is likely to be executed not only once or in a batch but should also
run in the future.

Extracting text of links (section)
The section is easy to extract. Using the Web Inspector again, we can find that the
CSS selector is the following:

soup.select_one("div.ArticleHeader_channel a").text

Out:

'Politics'
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Extracting reading time
Reading time can be found easily via the Web Inspector:

soup.select_one("p.BylineBar_reading-time").text

Out:

'6 Min Read'

Extracting attributes (ID)
Having a primary key that uniquely identifies an article is helpful. The ID is also
present in the URL, but there might be some heuristics and advanced splitting neces‐
sary to find it. Using the browser’s View Source functionality and searching for this
ID, we see that it is the id attribute of the article container:

soup.select_one("div.StandardArticle_inner-container")['id']

Out:

'USKBN1WG4KT'

Extracting attribution
Apart from the authors, the article carries more attributions. They can be found at the
end of the text and reside in a special container:

soup.select_one("p.Attribution_content").text

Out:

'Reporting Jacqueline Tempera in Brookline and Boston, Massachusetts, and
Jonathan Allen in New York; Editing by Frank McGurty and Bill Berkrot'

Extracting timestamp
For many statistical purposes, it is crucial to know the time that the article was pos‐
ted. This is mentioned next to the section, but unfortunately it is constructed to be
human-readable (like “3 days ago”). This can be parsed but is tedious. Knowing the
real publishing time, the correct element can be found in the HTML head element:

ptime = soup.find("meta", { 'property': "og:article:published_time"})['content']
print(ptime)

Out:

2019-10-01T19:23:16+0000

A string is already helpful (especially in this notation, as we will see later), but Python
offers facilities to convert that to a datetime object easily:

from dateutil import parser
parser.parse(ptime)
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Out:

datetime.datetime(2019, 10, 1, 19, 23, 16, tzinfo=tzutc())

The same can be done for modified_time instead of published_time, if that is more
relevant.

Use regular expressions only for crude extraction. An HTML parser is slower but
much easier to use and more stable.

Often, it makes sense to take a look at the semantic structure of the documents and
use HTML tags that have semantic class names to find the value of structural ele‐
ments. These tags have the advantage that they are the same over a large class of web
pages. Extraction of their content therefore has to be implemented only once and can
be reused.

Apart from extremely simple cases, try to use an HTML parser whenever possible.
Some standard structures that can be found in almost any HTML document are dis‐
cussed in the following sidebar.

Standardized Extraction
Normally, it is a good idea to extract at least these standardized parts of each
document:

• Title: Use the <title> or <h1> tag.
• Summary of web page: Look for <meta name="description">.
• Structured header information: Standardized in the OpenGraph. Search for
og: in the source code of a page.

• URL of a web page: The URL itself might contain valuable information and can
be found in <link rel="canonical>.

• URL structure: Modern URLs are often not cryptic but contain a lot of informa‐
tion, like categories (sections) organized in folders, IDs, or even timestamps in
blogs.
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Blueprint: Spidering
So far we have taken a look at how we can download web pages and
extract the content using HTML parsing techniques. From a business per‐

spective, looking at single pages is often not so interesting, butyou want to see the
whole picture. For this, you need much more content.

Fortunately, our acquired knowledge can be combined to download content archives
or whole websites. This is often a multistage process where you need to generate
URLs first, download the content, find more URLs, and so on.

This section explains one of these “spidering” examples in detail and creates a scalable
blueprint that can be used for downloading thousands (or millions) of pages.

Introducing the Use Case
Parsing a single Reuters article is a nice exercise, but the Reuters archive is much
larger and contains many articles. It is also possible to use the techniques we have
covered to parse a larger amount. Imagine that you want to download and extract, for
example, a whole forum with user-generated content or a website with scientific arti‐
cles. As mentioned previously, it is often most difficult to find the correct URLs of the
articles.

Not in this case, though. It would be possible to use sitemap.xml, but Reuters is gener‐
ous enough to offer a dedicated archive page at https://www.reuters.com/news/archive.
A paging functionality is also available, so it’s possible to go backward in time.

Figure 3-5 shows the steps for downloading part of the archive (called spidering). The
process works as follows:

1. Define how many pages of the archive should be downloaded.
2. Download each page of the archive into a file called page-000001.html,

page-000002.html, and so on for easier inspection. Skip this step if the file is
already present.

3. For each page-*.html file, extract the URLs of the referenced articles.
4. For each article URL, download the article into a local HTML file. Skip this step

if the article file is already present.
5. For each article file, extract the content into a dict and combine these dicts into

a Pandas DataFrame.
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Figure 3-5. Flowchart for spidering process.

In a more generic approach, it might be necessary to create intermediate URLs in step
3 (if there is an overview page for years, months, etc.) before we finally arrive at the
article URLs.

The procedure is constructed in a way that each step can be run individually and
downloads have to be performed only once. This has proven to be useful, especially
when we have to extract a large number of articles/URLs, as a single missing down‐
load or malformed HTML page does not mean that the whole procedure including
downloading has to be started again. Moreover, the process can be restarted anytime
and downloads only data that has not yet been downloaded. This is called idempo‐
tence and is often a useful concept when interacting with “expensive” APIs.

The finished program looks like this:

import requests
from bs4 import Beautiful Soup
import os.path
from dateutil import parser

def download_archive_page(page):
    filename = "page-%06d.html" % page
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    if not os.path.isfile(filename):
        url = "https://www.reuters.com/news/archive/" + \
              "?view=page&page=%d&pageSize=10" % page
        r = requests.get(url)
        with open(filename, "w+") as f:
            f.write(r.text)

def parse_archive_page(page_file):
    with open(page_file, "r") as f:
        html = f.read()

    soup = Beautiful Soup(html, 'html.parser')
    hrefs = ["https://www.reuters.com" + a['href']
               for a in soup.select("article.story div.story-content a")]
    return hrefs

def download_article(url):
    # check if article already there
    filename = url.split("/")[-1] + ".html"
    if not os.path.isfile(filename):
        r = requests.get(url)
        with open(filename, "w+") as f:
            f.write(r.text)

def parse_article(article_file):
    with open(article_file, "r") as f:
        html = f.read()
    r = {}
    soup = Beautiful Soup(html, 'html.parser')
    r['id'] = soup.select_one("div.StandardArticle_inner-container")['id']
    r['url'] = soup.find("link", {'rel': 'canonical'})['href']
    r['headline'] = soup.h1.text
    r['section'] = soup.select_one("div.ArticleHeader_channel a").text    
    r['text'] = soup.select_one("div.StandardArticleBody_body").text
    r['authors'] = [a.text
                    for a in soup.select("div.BylineBar_first-container.\
                                          ArticleHeader_byline-bar\
                                          div.BylineBar_byline span")]
    r['time'] = soup.find("meta", { 'property':
                                    "og:article:published_time"})['content']
    return r

Having defined these functions, they can be invoked with parameters (which can
easily be changed):

# download 10 pages of archive
for p in range(1, 10):
    download_archive_page(p)

# parse archive and add to article_urls
import glob

article_urls = []
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for page_file in glob.glob("page-*.html"):
    article_urls += parse_archive_page(page_file)

# download articles
for url in article_urls:
    download_article(url)

# arrange in pandas DataFrame
import pandas as pd

df = pd.DataFrame()
for article_file in glob.glob("*-id???????????.html"):
    df = df.append(parse_article(article_file), ignore_index=True)

df['time'] = pd.to_datetime(df.time)

Error Handling and Production-Quality Software
For simplicity, all example programs discussed in this chapter do not use error han‐
dling. For production software, however, you should use exception handling. As
HTML can change frequently and pages might be incomplete, errors can happen at
any time, so it is a good idea to use try/except generously and log the errors. If sys‐
tematic errors occur, you should look for the root cause and eliminate it. If errors
occur only sporadically or due to malformed HTML, you can probably ignore them,
as they might also be due to server software.

Using the download and save file mechanism described earlier, the extraction proce‐
dure can be restarted anytime or also be applied to certain problematic files
separately. This is often a big advantage and helps to achieve a cleanly extracted data‐
set fast.

Generating URLs is often as difficult as extracting content and is frequently related to
it. In many cases, this has to be repeated several times to download, for example, hier‐
archical content.

When you download data, always find a filename for each URL and save it to the file‐
system. You will have to restart the process more often than you think. Not having to
download everything over and over is immensely useful, especially during the devel‐
opment process.

If you have downloaded and extracted the data, you will probably want to persist it
for later use. An easy way is to save it in individual JSON files. If you have many files,
using a directory structure might be a good option. With an increasing number of
pages, even this might not scale well, and it’s a better idea to use a database or another
columnar data store.
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Density-Based Text Extraction
Extracting structured data from HTML is not complicated, but it is tedious. If you
want to extract data from a whole website, it is well worth the effort as you only have
to implement the extraction for a limited number of page types.

However, you may need to extract text from many different websites. Implementing
the extraction for each of them does not scale well. There is some metadata that can
be found easily, such as title, description, etc. But the text itself is not so easy to find.

Taking a look at the information density, there are some heuristics that allow extrac‐
tion of the text. The algorithm behind it measures the density of information and
therefore automatically eliminates repeated information such as headers, navigation,
footers, and so on. The implementation is not so simple but is fortunately available in
a library called python-readability. The name originates from a now-orphaned
browser plugin called Readability, which was conceived to remove clutter from web
pages and make them easily readable—exactly what is needed here. To get started, we
must first install python-readability (pip install readability-lxml).

Extracting Reuters Content with Readability
Let’s see how this works in the Reuters example. We keep the HTML we have down‐
loaded, but of course you can also use a file or URL:

from readability import Document

doc = Document(html)
doc.title()

Out:

'Banned in Boston: Without vaping, medical marijuana patients must adapt -
Reuters'

As you can see, that was easy. The title can be extracted via the corresponding ele‐
ment. However, the library can do some additional tricks, such as finding the title or
the summary of the page:

doc.short_title()

Out:

'Banned in Boston: Without vaping, medical marijuana patients must adapt'

That is already quite good. Let’s check how well it works for the actual content:

doc.summary()
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Out:

'<html><body><div><div class="StandardArticleBody_body"><p>BOSTON (Reuters) -
In the first few days of [...] </p>

<div class="Attribution_container"><div class="Attribution_attribution">
<p class="Attribution_content">Reporting Jacqueline Tempera in Brookline
and Boston, Massachusetts, and Jonathan Allen in New York; Editing by Frank
McGurty and Bill Berkrot</p></div></div></div></div></body></html>'

The data still has some remaining HTML structure, which can be useful to keep
because paragraphs are included. Of course, the body part can be extracted again with 
Beautiful Soup:

density_soup = Beautiful Soup(doc.summary(), 'html.parser')
density_soup.body.text

Out:

'BOSTON (Reuters) - In the first few days of the four-month ban on all vaping
products in Massachusetts, Laura Lee Medeiros, a medical marijuana patient,
began to worry.\xa0 FILE PHOTO: An employee puts down an eighth of an ounce
marijuana after letting a customer smell it outside the Magnolia cannabis
lounge in Oakland, California, U.S. [...]

Reporting Jacqueline Tempera in Brookline and Boston, Massachusetts, and
Jonathan Allen in New York; Editing by Frank McGurty and Bill Berkrot'

In this case, the results are excellent. In most of the cases, python-readability works
reasonably well and removes the need to implement too many special cases. However,
the cost of using this library is uncertainty. Will it always work in the expected way
with the impossibility of extracting structured data such as timestamps, authors, and
so on (although there might be other heuristics for that)?

Summary Density-Based Text Extraction
Density-based text extraction is powerful when using both heuristics and statistical
information about information distribution on an HTML page. You should keep in
mind that the results are almost always worse when compared to implementing a spe‐
cific extractor. However, if you need to extract content from many different page
types or from an archive where you don’t have a fixed layout at all, it might well be
worth it to go that way.

Performing a detailed quality assurance afterward is even more essential compared to
the structured approach as both the heuristics and the statistics might sometimes go
in the wrong direction.
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All-in-One Approach
Scrapy is another Python package that offers an all-in-one approach to spidering and
content extraction. The methods are similar to the ones described in the earlier sec‐
tions, although Scrapy is more suited for downloading whole websites and not only
parts of them.

The object-oriented, holistic approach of Scrapy is definitely nice, and the code is
readable. However, it turns out to be quite difficult to restart spidering and extraction
without having to download the whole website again.

Compared to the approach described earlier, downloading must also happen in
Python. For websites with a huge number of pages, HTTP keep-alive cannot be used,
and gzip encoding is also difficult. Both can be easily integrated in the modular
method by externalizing the downloads via tools such as wget.

Blueprint: Scraping the Reuters Archive with
Scrapy
Let’s see how the download of the archive and the articles would look in

Scrapy. Go ahead and install Scrapy (either via conda install scrapy or pip
install scrapy).

import scrapy
import logging

class ReutersArchiveSpider(scrapy.Spider):
    name = 'reuters-archive'

    custom_settings = {
        'LOG_LEVEL': logging.WARNING,
        'FEED_FORMAT': 'json',
        'FEED_URI': 'reuters-archive.json'
    }

    start_urls = [
        'https://www.reuters.com/news/archive/',
    ]

    def parse(self, response):
        for article in response.css("article.story div.story-content a"):
            yield response.follow(article.css("a::attr(href)").extract_first(),
                                  self.parse_article)
        next_page_url = response.css('a.control-nav-next::attr(href)').\
                        extract_first()
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        if (next_page_url is not None) & ('page=2' not in next_page_url):
            yield response.follow(next_page_url, self.parse)

    def parse_article(self, response):
        yield {
          'title': response.css('h1::text').extract_first().strip(),
          'section': response.css('div.ArticleHeader_channel a::text').\
                     extract_first().strip(),
          'text': "\n".join(response.\
                  css('div.StandardArticleBody_body p::text').extract())
        }

Scrapy works in an object-oriented way. For each so-called spider, a class needs to be
implemented that is derived from scrapy.Spider. Scrapy adds a lot of debug output,
which is reduced in the previous example by logging.WARNING. The base class auto‐
matically calls the parse function with the start_urls. This function extracts the
links to the article and invokes yield with the function parse_article as a parame‐
ter. This function in turn extracts some attributes from the articles and yields them
in a dict. Finally, the next page link is crawled, but we stop here before getting the
second page.

yield has a double functionality in Scrapy. If a dict is yielded, it is added to the
results. If a Request object is yielded, the object is fetched and gets parsed.

Scrapy and Jupyter

Scrapy is optimized for command-line usage, but it can also be
invoked in a Jupyter notebook. Because of Scrapy’s usage of the
(ancient) Twisted environment, the scraping cannot be restarted, so
you have only one shot if you try it in the notebook (otherwise you
have to restart the notebook):

# this can be run only once from a Jupyter notebook
# due to Twisted
from scrapy.crawler import CrawlerProcess
process = CrawlerProcess()

process.crawl(ReutersArchiveSpider)
process.start()

Here are a few things worth mentioning:

• The all-in-one approach looks elegant and concise.
• As most of the coding is spent in extracting data in the articles, this code has to

change frequently. For this, spidering has to be restarted (and if you are running
the script in Jupyter, you also have to start the Jupyter notebook server), which
tremendously increases turnaround times.
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• It’s nice that JSON can directly be produced. Be careful as the JSON file is
appended, which can result in an invalid JSON if you don’t delete the file before
starting the spidering process. This can be solved by using the so-called jl format
(JSON lines), but it is a workaround.

• Scrapy has some nice ideas. In our day-to-day work, we do not use it, mainly
because debugging is hard. If persistence of the HTML files is needed (which we
strongly suggest), it loses lots of advantages. The object-oriented approach is use‐
ful and can be implemented outside of Scrapy without too much effort.

As Scrapy also uses CSS selectors for extracting HTML content, the basic technolo‐
gies are the same as with the other approaches. There are considerable differences in
the downloading method, though. Having Twisted as a backend creates some over‐
head and imposes a special programming model.

Decide carefully whether an all-in-one approach suits your project needs. For some
websites, ready-made Scrapy spiders might already be available and can be reused.

Possible Problems with Scraping
Before scraping content, it is always worthwhile to consider possible copyright and
data protection issues.

More and more web applications are constructed using frameworks like React. They
have only a single page, and data is transferred via an API. This often leads to web‐
sites not working without JavaScript. Sometimes there are specialized URLs construc‐
ted for search engines that are also useful for spidering. Usually, those can be found in
sitemap.xml. You can try it by switching off JavaScript in your browser and then see
whether the website still works.

If JavaScript is needed, you can find requests on the Network tab by using the Web
Inspector of the browser and clicking around the application. Sometimes, JSON is
used to transfer the data, which makes extraction often much easier compared to
HTML. However, the individual JSON URLs still have to be generated, and there
might be additional parameters to avoid cross-site request forgery (CSRF).

Requests can become quite complicated, such as in the Facebook timeline, on Insta‐
gram, or on Twitter. Obviously, these websites try to keep their content for themselves
and avoid spidering.

For complicated cases, it can be useful to “remote control” the browser by using Sele‐
nium, a framework that was originally conceived for the automated testing of web
applications, or a headless browser.
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Websites like Google try to detect automatic download attempts and start sending
captchas. This can also happen with other websites. Most of the time this is bound to
certain IP addresses. The website must then be “unlocked” with a normal browser,
and the automatic requests should be sent with larger pauses between them.

Another method to avoid content extraction is obfuscated HTML code where CSS
classes have totally random names. If the names do not change, this is more work ini‐
tially to find the correct selectors but should work automatically afterward. If
the names change every day (for example), content extraction becomes extremely
difficult.

Closing Remarks and Recommendation
Web scraping is a powerful and scalable technique to acquire content. The necessary
Python infrastructure supports scraping projects in an excellent way. The combina‐
tion of the requests library and Beautiful Soup is comfortable and works well for
moderately large scraping jobs.

As we have seen throughout the chapter, we can systematically split up large scraping
projects into URL generation and downloading phases. If the number of documents
becomes really big, external tools like wget might be more appropriate compared to
requests. As soon as everything is downloaded, Beautiful Soup can be used to extract
the content.

If you want to minimize waiting time, all stages can be run in parallel.

In any case, you should be aware of the legal aspects and behave as an “ethical scra‐
per” by respecting the rules in robots.txt.
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CHAPTER 4

Preparing Textual Data for Statistics and
Machine Learning

Technically, any text document is just a sequence of characters. To build models on
the content, we need to transform a text into a sequence of words or, more generally,
meaningful sequences of characters called tokens. But that alone is not sufficient.
Think of the word sequence New York, which should be treated as a single named-
entity. Correctly identifying such word sequences as compound structures requires
sophisticated linguistic processing.

Data preparation or data preprocessing in general involves not only the transforma‐
tion of data into a form that can serve as the basis for analysis but also the removal of
disturbing noise. What’s noise and what isn’t always depends on the analysis you are
going to perform. When working with text, noise comes in different flavors. The raw
data may include HTML tags or special characters that should be removed in most
cases. But frequent words carrying little meaning, the so-called stop words, introduce
noise into machine learning and data analysis because they make it harder to detect
patterns.

What You’ll Learn and What We’ll Build
In this chapter, we will develop blueprints for a text preprocessing pipeline. The pipe‐
line will take the raw text as input, clean it, transform it, and extract the basic features
of textual content. We start with regular expressions for data cleaning and tokeniza‐
tion and then focus on linguistic processing with spaCy. spaCy is a powerful NLP
library with a modern API and state-of-the-art models. For some operations we will
make use of textacy, a library that provides some nice add-on functionality especially
for data preprocessing. We will also point to NLTK and other libraries whenever it
appears helpful.
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After studying this chapter, you will know the required and optional steps of data
preparation. You will know how to use regular expressions for data cleaning and how
to use spaCy for feature extraction. With the provided blueprints you will be able to
quickly set up a data preparation pipeline for your own project.

A Data Preprocessing Pipeline
Data preprocessing usually involves a sequence of steps. Often, this sequence is called
a pipeline because you feed raw data into the pipeline and get the transformed and
preprocessed data out of it. In Chapter 1 we already built a simple data processing
pipeline including tokenization and stop word removal. We will use the term pipeline
in this chapter as a general term for a sequence of processing steps. Figure 4-1 gives
an overview of the blueprints we are going to build for the preprocessing pipeline in
this chapter.

Figure 4-1. A pipeline with typical preprocessing steps for textual data.

The first major block of operations in our pipeline is data cleaning. We start by identi‐
fying and removing noise in text like HTML tags and nonprintable characters. Dur‐
ing character normalization, special characters such as accents and hyphens are
transformed into a standard representation. Finally, we can mask or remove identifi‐
ers like URLs or email addresses if they are not relevant for the analysis or if there are
privacy issues. Now the text is clean enough to start linguistic processing.

Here, tokenization splits a document into a list of separate tokens like words and
punctuation characters. Part-of-speech (POS) tagging is the process of determining the
word class, whether it’s a noun, a verb, an article, etc. Lemmatization maps inflected
words to their uninflected root, the lemma (e.g., “are” → “be”). The target of named-
entity recognition is the identification of references to people, organizations, locations,
etc., in the text.

In the end, we want to create a database with preprared data ready for analysis and
machine learning. Thus, the required preparation steps vary from project to project.
It’s up to you to decide which of the following blueprints you need to include in your
problem-specific pipeline.
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Introducing the Dataset: Reddit Self-Posts
The preparation of textual data is particularly challenging when you work with user-
generated content (UGC). In contrast to well-redacted text from professional reports,
news, and blogs, user contributions in social media usually are short and contain lots
of abbreviations, hashtags, emojis, and typos. Thus, we will use the Reddit Self-Posts
dataset, which is hosted on Kaggle. The complete dataset contains roughly 1 million
user posts with title and content, arranged in 1,013 different subreddits, each of
which has 1,000 records. We will use a subset of only 20,000 posts contained in the
autos category. The dataset we prepare in this chapter is the basis for the analysis of
word embeddings in Chapter 10.

Loading Data Into Pandas
The original dataset consists of two separate CSV files, one with the posts and the
other one with some metadata for the subreddits, including category information.
Both files are loaded into a Pandas DataFrame by pd.read_csv() and then joined into
a single DataFrame.

import pandas as pd

posts_file = "rspct.tsv.gz"
posts_df = pd.read_csv(posts_file, sep='\t')

subred_file = "subreddit_info.csv.gz"
subred_df = pd.read_csv(subred_file).set_index(['subreddit'])

df = posts_df.join(subred_df, on='subreddit')

Blueprint: Standardizing Attribute Names
Before we start working with the data, we will change the dataset-specific
column names to more generic names. We recommend always naming
the main DataFrame df, and naming the column with the text to analyze

text. Such naming conventions for common variables and attribute names make it
easier to reuse the code of the blueprints in different projects.

Let’s take a look at the columns list of this dataset:

print(df.columns)

Out:

Index(['id', 'subreddit', 'title', 'selftext', 'category_1', 'category_2',
       'category_3', 'in_data', 'reason_for_exclusion'],
      dtype='object')
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For column renaming and selection, we define a dictionary column_mapping where
each entry defines a mapping from the current column name to a new name. Col‐
umns mapped to None and unmentioned columns are dropped. A dictionary is per‐
fect documentation for such a transformation and easy to reuse. This dictionary is
then used to select and rename the columns that we want to keep.

column_mapping = {
    'id': 'id',
    'subreddit': 'subreddit',
    'title': 'title',
    'selftext': 'text',
    'category_1': 'category',
    'category_2': 'subcategory',
    'category_3': None, # no data
    'in_data': None, # not needed
    'reason_for_exclusion': None # not needed
}

# define remaining columns
columns = [c for c in column_mapping.keys() if column_mapping[c] != None]

# select and rename those columns
df = df[columns].rename(columns=column_mapping)

As already mentioned, we limit the data to the autos category:

df = df[df['category'] == 'autos']

Let’s take a brief look at a sample record to get a first impression of the data:

df.sample(1).T

14356

id 7jc2k4

subreddit volt

title Dashcam for 2017 volt

text Hello.<lb>I’m looking into getting a dashcam. <lb>Does anyone have any recommendations?
<lb><lb>I’m generally looking for a rechargeable one so that I don’t have to route wires down to the
cigarette lighter. <lb>Unless there are instructions on how to wire it properly without wires showing.
<lb><lb><lb>Thanks!

category autos

subcategory chevrolet
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Saving and Loading a DataFrame
After each step of data preparation, it is helpful to write the respective DataFrame to
disk as a checkpoint. Pandas directly supports a number of serialization options.
Text-based formats like CSV or JSON can be imported into most other tools easily.
However, information about data types is lost (CSV) or only saved rudimentarily
(JSON). The standard serialization format of Python, pickle, is supported by Pandas
and therefore a viable option. It is fast and preserves all information but can only be
processed by Python. “Pickling” a data frame is easy; you just need to specify the file‐
name:

df.to_pickle("reddit_dataframe.pkl")

We prefer, however, storing dataframes in SQL databases because they give you all the
advantages of SQL, including filters, joins, and easy access from many tools. But in
contrast to pickle, only SQL data types are supported. Columns containing objects
or lists, for example, cannot simply be saved this way and need to be serialized
manually.

In our examples, we will use SQLite to persist data frames. SQLite is well integrated
with Python. Moreover, it’s just a library and does not require a server, so the files are
self-contained and can be exchanged between different team members easily. For
more power and safety, we recommend a server-based SQL database.

We use pd.to_sql() to save our DataFrame as table posts into an SQLite database.
The DataFrame index is not stored, and any existing data is overwritten:

import sqlite3

db_name = "reddit-selfposts.db"
con = sqlite3.connect(db_name)
df.to_sql("posts", con, index=False, if_exists="replace")
con.close()

The DataFrame can be easily restored with pd.read_sql():

con = sqlite3.connect(db_name)
df = pd.read_sql("select * from posts", con)
con.close()
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Cleaning Text Data
When working with user requests or comments as opposed to well-edited articles,
you usually have to deal with a number of quality issues:

Special formatting and program code
The text may still contain special characters, HTML entities, Markdown tags, and
things like that. These artifacts should be cleaned in advance because they com‐
plicate tokenization and introduce noise.

Salutations, signatures, addresses, etc.
Personal communication often contains meaningless polite phrases and saluta‐
tions by name that are usually irrelevant for the analysis.

Replies
If your text contains answers repeating the question text, you need to delete the
duplicate questions. Keeping them will distort any model and statistics.

In this section, we will demonstrate how to use regular expressions to identify and
remove unwanted patterns in the data. Check out the following sidebar for some
more details on regular expressions in Python.

Regular Expressions
Regular expressions are an essential tool for text data preparation. They can be used
not only for tokenization and data cleaning but also for the identification and treat‐
ment of email addresses, salutations, program code, and more.

Python has the standard library re for regular expressions and the newer, backward-
compatible library regex that offers support for POSIX character classes and some
more flexibility.

A good overview about the available meta-characters like ^ as well as character classes
like \w is available at W3Schools. There is also a number of interactive websites to
develop and test regular expressions, e.g., https://regex101.com (make sure to set the
flavor to Python).

In many packages, you will find the precompiled regular expressions like this:

RE_BRACKET = re.compile('\[[^\[\]]*\]')
text = RE_BRACKET.sub(' ', text)

Precompilation was originally a mechanism to improve performance, but modern
Python automatically caches compiled versions of regular expressions. However, it
still gives some benefit for frequently accessed expressions and improves readability.
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Take a look at the following text example from the Reddit dataset:

text = """
After viewing the [PINKIEPOOL Trailer](https://www.youtu.be/watch?v=ieHRoHUg)
it got me thinking about the best match ups.
<lb>Here's my take:<lb><lb>[](/sp)[](/ppseesyou) Deadpool<lb>[](/sp)[](/ajsly)
Captain America<lb>"""

It will definitely improve the results if this text gets some cleaning and polishing.
Some tags are just artifacts from web scraping, so we will get rid of them. And as we
are not interested in the URLs and other links, we will discard them as well.

Blueprint: Identify Noise with Regular Expressions
The identification of quality problems in a big dataset can be tricky. Of
course, you can and should take a look at a sample of the data. But
the probability is high that you won’t find all the issues. It is better to

define rough patterns indicating likely problems and check the complete dataset
programmatically.

The following function can help you to identify noise in textual data. By noise we
mean everything that’s not plain text and may therefore disturb further analysis. The
function uses a regular expression to search for a number of suspicious characters
and returns their share of all characters as a score for impurity. Very short texts (less
than min_len characters) are ignored because here a single special character would
lead to a significant impurity and distort the result.

import re

RE_SUSPICIOUS = re.compile(r'[&#<>{}\[\]\\]')

def impurity(text, min_len=10):
    """returns the share of suspicious characters in a text"""
    if text == None or len(text) < min_len:
        return 0
    else:
        return len(RE_SUSPICIOUS.findall(text))/len(text)

print(impurity(text))

Out:

0.09009009009009009

You almost never find these characters in well-redacted text, so the scores in general
should be very small. For the previous example text, about 9% of the characters
are “suspicious” according to our definition. The search pattern may of course
need adaption for corpora containing hashtags or similar tokens containing special
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1 The Pandas operations map and apply were explained in “Blueprint: Building a Simple Text Preprocessing
Pipeline” on page 10.

2 Libraries specialized in HTML data cleaning such as Beautiful Soup were introduced in Chapter 3.

characters. However, it doesn’t need to be perfect; it just needs to be good enough to
indicate potential quality issues.

For the Reddit data, we can get the most “impure” records with the following two
statements. Note that we use Pandas apply() instead of the similar map() because it
allows us to forward additional parameters like min_len to the applied function.1

# add new column to data frame
df['impurity'] = df['text'].apply(impurity, min_len=10)

# get the top 3 records
df[['text', 'impurity']].sort_values(by='impurity', ascending=False).head(3)

text impurity

19682 Looking at buying a 335i with 39k miles and 11 months left on the CPO warranty. I asked the deal... 0.21

12357 I’m looking to lease an a4 premium plus automatic with the nav package.<lb><lb>Vehicle Price:<ta... 0.17

2730 Breakdown below:<lb><lb>Elantra GT<lb><lb>2.0L 4-cylinder<lb><lb>6-speed Manual
Transmission<lb>...

0.14

Obviously, there are many tags like <lb> (linebreak) and <tab> included. Let’s check
if there are others by utilizing our word count blueprint from Chapter 1 in combina‐
tion with a simple regex tokenizer for such tags:

from blueprints.exploration import count_words
count_words(df, column='text', preprocess=lambda t: re.findall(r'<[\w/]*>', t))

freq token

<lb> 100729

<tab> 642

Now we know that although these two tags are common, they are the only ones.

Blueprint: Removing Noise with Regular Expressions
Our approach to data cleaning consists of defining a set of regular expres‐
sions and identifying problematic patterns and corresponding substitu‐
tion rules.2 The blueprint function first substitutes all HTML escapes (e.g.,
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&amp;) by their plain-text representation and then replaces certain patterns by spaces.
Finally, sequences of whitespaces are pruned:

import html

def clean(text):
    # convert html escapes like &amp; to characters.
    text = html.unescape(text)
    # tags like <tab>
    text = re.sub(r'<[^<>]*>', ' ', text)
    # markdown URLs like [Some text](https://....)
    text = re.sub(r'\[([^\[\]]*)\]\([^\(\)]*\)', r'\1', text)
    # text or code in brackets like [0]
    text = re.sub(r'\[[^\[\]]*\]', ' ', text)
    # standalone sequences of specials, matches &# but not #cool
    text = re.sub(r'(?:^|\s)[&#<>{}\[\]+|\\:-]{1,}(?:\s|$)', ' ', text)
    # standalone sequences of hyphens like --- or ==
    text = re.sub(r'(?:^|\s)[\-=\+]{2,}(?:\s|$)', ' ', text)
    # sequences of white spaces
    text = re.sub(r'\s+', ' ', text)
    return text.strip()

Be careful: if your regular expressions are not defined precisely
enough, you can accidentally delete valuable information during
this process without noticing it! The repeaters + and * can be espe‐
cially dangerous because they match unbounded sequences of
characters and can remove large portions of the text.

Let’s apply the clean function to the earlier sample text and check the result:

clean_text = clean(text)
print(clean_text)
print("Impurity:", impurity(clean_text))

Out:

After viewing the PINKIEPOOL Trailer it got me thinking about the best
match ups. Here's my take: Deadpool Captain America
Impurity: 0.0

That looks pretty good. Once you have treated the first patterns, you should check the
impurity of the cleaned text again and add further cleaning steps if necessary:

df['clean_text'] = df['text'].map(clean)
df['impurity']   = df['clean_text'].apply(impurity, min_len=20)

df[['clean_text', 'impurity']].sort_values(by='impurity', ascending=False) \
                              .head(3)
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clean_text impurity

14058 Mustang 2018, 2019, or 2020? Must Haves!! 1. Have a Credit score of 780\+ for the best low interest
rates! 2. Join a Credit Union to finance the vehicle! 3. Or Find a Lender to finance the vehicle...

0.03

18934 At the dealership, they offered an option for foot-well illumination, but I cannot find any reference to
this online. Has anyone gotten it? How does it look? Anyone have pictures. Not sure if this...

0.03

16505 I am looking at four Caymans, all are in a similar price range. The major differences are the miles, the
years, and one isn’t a S. https://www.cargurus.com/Cars/inventorylisting/viewDetailsFilterV...

0.02

Even the dirtiest records, according to our regular expression, look pretty clean now.
But besides those rough patterns we were searching for, there are also more subtle
variations of characters that can cause problems.

Blueprint: Character Normalization with textacy
Take a look at the following sentence, which contains typical issues related
to variants of letters and quote characters:

text = "The café “Saint-Raphaël” is loca-\nted on Côte dʼAzur."

Accented characters can be a problem because people do not consistently use them.
For example, the tokens Saint-Raphaël and Saint-Raphael will not be recognized as
identical. In addition, texts often contain words separated by a hyphen due to the
automatic line breaks. Fancy Unicode hyphens and apostrophes like the ones used in
the text can be a problem for tokenization. For all of these issues it makes sense to
normalize the text and replace accents and fancy characters with ASCII equivalents.

We will use textacy for that purpose. textacy is an NLP library built to work with
spaCy. It leaves the linguistic part to spaCy and focuses on pre- and postprocessing.
Thus, its preprocessing module comprises a nice collection of functions to normalize
characters and to treat common patterns such as URLs, email addresses, telephone
numbers, and so on, which we will use next. Table 4-1 shows a selection of textacy’s 
preprocessing functions. All of these functions work on plain text, completely inde‐
pendent from spaCy.

Table 4-1. Subset of textacy’s preprocessing functions

Function Description
normalize_hyphenated_words Reassembles words that were separated by a line break
normalize_quotation_marks Replaces all kind of fancy quotation marks with an ASCII equivalent
normalize_unicode Unifies different codes of accented characters in Unicode
remove_accents Replaces accented characters with ASCII, if possible, or drops them
replace_urls Similar for URLs like https://xyz.com
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Function Description
replace_emails Replaces emails with _EMAIL_
replace_hashtags Similar for tags like #sunshine
replace_numbers Similar for numbers like 1235
replace_phone_numbers Similar for telephone numbers +1 800 456-6553
replace_user_handles Similar for user handles like @pete
replace_emojis Replaces smileys etc. with _EMOJI_

Our blueprint function shown here standardizes fancy hyphens and quotes and
removes accents with the help of textacy:

import textacy.preprocessing as tprep

def normalize(text):
    text = tprep.normalize_hyphenated_words(text)
    text = tprep.normalize_quotation_marks(text)
    text = tprep.normalize_unicode(text)
    text = tprep.remove_accents(text)
    return text

When this is applied to the earlier example sentence, we get the following result:

print(normalize(text))

Out:

The cafe "Saint-Raphael" is located on Cote d'Azur.

As Unicode normalization has many facets, you can check out
other libraries. unidecode, for example, does an excellent job here.

Blueprint: Pattern-Based Data Masking with textacy
Text, in particular content written by users, often contains not only ordi‐
nary words but also several kinds of identifiers, such as URLs, email
addresses, or phone numbers. Sometimes we are interested especially in

those items, for example, to analyze the most frequently mentioned URLs. In many
cases, though, it may be better to remove or mask this information, either because it
is not relevant or for privacy reasons.

textacy has some convenient replace functions for data masking (see Table 4-1).
Most of the functions are based on regular expressions, which are easily accessible via
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the open source code. Thus, whenever you need to treat any of these items, textacy
has a regular expression for it that you can directly use or adapt to your needs. Let’s
illustrate this with a simple call to find the most frequently used URLs in the corpus:

from textacy.preprocessing.resources import RE_URL

count_words(df, column='clean_text', preprocess=RE_URL.findall).head(3)

token freq
www.getlowered.com 3
http://www.ecolamautomotive.com/#!2/kv7fq 2
https://www.reddit.com/r/Jeep/comments/4ux232/just_ordered_an_android_head_unit_joying_jeep/ 2

For the analysis we want to perform with this dataset (in Chapter 10), we are not
interested in those URLs. They rather represent a disturbing artifact. Thus, we will
substitute all URLs in our text with replace_urls, which is in fact just a call to
RE_URL.sub. The default substitution for all of textacy’s replace functions is a generic
tag enclosed by underscores like _URL_. You can choose your own substitution by
specifying the replace_with parameter. Often it makes sense to not completely
remove those items because it leaves the structure of the sentences intact. The follow‐
ing call illustrates the functionality:

from textacy.preprocessing.replace import replace_urls

text = "Check out https://spacy.io/usage/spacy-101"

# using default substitution _URL_
print(replace_urls(text))

Out:

Check out _URL_

To finalize data cleaning, we apply the normalization and data masking functions to
our data:

df['clean_text'] = df['clean_text'].map(replace_urls)
df['clean_text'] = df['clean_text'].map(normalize)

Data cleaning is like cleaning your house. You’ll always find some dirty corners, and
you won’t ever get your house totally clean. So you stop cleaning when it is sufficiently
clean. That’s what we assume for our data at the moment. Later in the process, if anal‐
ysis results are suffering from remaining noise, we may need to get back to data
cleaning.

We finally rename the text columns so that clean_text becomes text, drop the
impurity column, and store the new version of the DataFrame in the database.
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df.rename(columns={'text': 'raw_text', 'clean_text': 'text'}, inplace=True)
df.drop(columns=['impurity'], inplace=True)

con = sqlite3.connect(db_name)
df.to_sql("posts_cleaned", con, index=False, if_exists="replace")
con.close()

Tokenization
We already introduced a regex tokenizer in Chapter 1, which used a simple rule. In
practice, however, tokenization can be quite complex if we want to treat everything
correctly. Consider the following piece of text as an example:

text = """
2019-08-10 23:32: @pete/@louis - I don't have a well-designed
solution for today's problem. The code of module AC68 should be -1.
Have to think a bit... #goodnight ;-) 😩😬"""

Obviously, the rules to define word and sentence boundaries are not that simple. So 
what exactly is a token? Unfortunately, there is no clear definition. We could say that
a token is a linguistic unit that is semantically useful for analysis. This definition
implies that tokenization is application dependent to some degree. For example, in
many cases we can simply discard punctuation characters, but not if we want to keep
emoticons like :-) for sentiment analysis. The same is true for tokens containing
numbers or hashtags. Even though most tokenizers, including those used in NLTK
and spaCy, are based on regular expressions, they apply quite complex and some‐
times language-specific rules.

We will first develop our own blueprint for tokenization-based regular expressions
before we briefly introduce NLTK’s tokenizers. Tokenization in spaCy will be covered
in the next section of this chapter as part of spaCy’s integrated process.

Blueprint: Tokenization with Regular Expressions
Useful functions for tokenization are re.split() and re.findall(). The
first one splits a string at matching expressions, while the latter extracts all
character sequences matching a certain pattern. For example, in Chapter 1

we used the regex library with the POSIX pattern [\w-]*\p{L}[\w-]* to find
sequences of alphanumeric characters with at least one letter. The scikit-learn
CountVectorizer uses the pattern \w\w+ for its default tokenization. It matches all
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sequences of two or more alphanumeric characters. Applied to our sample sentence,
this yields the following result:3

tokens = re.findall(r'\w\w+', text)
print(*tokens, sep='|')

Out:

2019|08|10|23|32|pete|louis|don|have|well|designed|solution|for|today
problem|The|code|of|module|AC68|should|be|Have|to|think|bit|goodnight

Unfortunately, all special characters and the emojis are lost. To improve the result,
we add some additional expressions for the emojis and create a reusable regular
expression RE_TOKEN. The VERBOSE option allows readable formatting of complex
expressions. The following tokenize function and the example illustrate the use:

RE_TOKEN = re.compile(r"""
               ( [#]?[@\w'’\.\-\:]*\w     # words, hashtags and email addresses
               | [:;<]\-?[\)\(3]          # coarse pattern for basic text emojis
               | [\U0001F100-\U0001FFFF]  # coarse code range for unicode emojis
               )
               """, re.VERBOSE)

def tokenize(text):
    return RE_TOKEN.findall(text)

tokens = tokenize(text)
print(*tokens, sep='|')

Out:

2019-08-10|23:32|@pete|@louis|I|don't|have|a|well-designed|solution
for|today's|problem|The|code|of|module|AC68|should|be|-1|Have|to|think
a|bit|#goodnight|;-)|😩|😬

This expression should yield reasonably good results on most user-generated content.
It can be used to quickly tokenize text for data exploration, as explained in Chapter 1.
It’s also a good alternative for the default tokenization of the scikit-learn vectorizers,
which will be introduced in the next chapter.

Tokenization with NLTK
Let’s take a brief look at NLTK’s tokenizers, as NLTK is frequently used for tokeniza‐
tion. The standard NLTK tokenizer can be called by the shortcut word_tokenize. It
produces the following result on our sample text:
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4 For example, check out NLTK’s tweet tokenizer for regular expressions for text emoticons and URLs, or see
textacy’s compile regexes.

5 A good overview is “The Art of Tokenization” by Craig Trim.

import nltk

tokens = nltk.tokenize.word_tokenize(text)
print(*tokens, sep='|')

Out:

2019-08-10|23:32|:|@|pete/|@|louis|-|I|do|n't|have|a|well-designed
solution|for|today|'s|problem|.|The|code|of|module|AC68|should|be|-1|.
Have|to|think|a|bit|...|#|goodnight|;|-|)||😩😬

The function internally uses the TreebankWordTokenizer in combination with the
PunktSentenceTokenizer. It works well for standard text but has its flaws with hash‐
tags or text emojis. NLTK also provides a RegexpTokenizer, which is basically a
wrapper for re.findall() with some added convenience functionality. Besides that,
there are other regular-expression-based tokenizers in NLTK, like the TweetToken
izer or the multilingual ToktokTokenizer, which you can check out in the notebook
on GitHub for this chapter.

Recommendations for Tokenization
You will probably need to use custom regular expressions if you aim for high preci‐
sion on domain-specific token patterns. Fortunately, you can find regular expressions
for many common patterns in open source libraries and adapt them to your needs.4

In general, you should be aware of the following problematic cases in your applica‐
tion and define how to treat them:5

• Tokens containing periods, such as Dr., Mrs., U., xyz.com
• Hyphens, like in rule-based
• Clitics (connected word abbreviations), like in couldn't, we've or je t'aime
• Numerical expressions, such as telephone numbers ((123) 456-7890) or dates

(August 7th, 2019)
• Emojis, hashtags, email addresses, or URLs

The tokenizers in common libraries differ especially with regard to those tokens.
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6 See spaCy’s website for a list of available models.

Linguistic Processing with spaCy
spaCy is a powerful library for linguistic data processing. It provides an integrated
pipeline of processing components, by default a tokenizer, a part-of-speech tagger, a
dependency parser, and a named-entity recognizer (see Figure 4-2). Tokenization is
based on complex language-dependent rules and regular expressions, while all subse‐
quent steps use pretrained neural models.

Figure 4-2. spaCy’s NLP pipeline.

The philosophy of spaCy is that the original text is retained throughout the process.
Instead of transforming it, spaCy adds layers of information. The main object to rep‐
resent the processed text is a Doc object, which itself contains a list of Token objects.
Any range selection of tokens creates a Span. Each of these object types has properties
that are determined step-by-step.

In this section, we explain how to process a document with spaCy, how to work with
tokens and their attributes, how to use part-of-speech tags, and how to extract named
entities. We will dive even deeper into spaCy’s more advanced concepts in Chap‐
ter 12, where we write our own pipeline components, create custom attributes, and
work with the dependency tree generated by the parser for knowledge extraction.

For the development of the examples in this book, we used spaCy
version 2.3.2. If you already use spaCy 3.0, which is still under
development at the time of writing, your results may look slightly
different.

Instantiating a Pipeline
Let’s get started with spaCy. As a first step we need to instantiate an object of spaCy’s
Language class by calling spacy.load() along with the name of the model file to use.6

We will use the small English language model en_core_web_sm in this chapter. The
variable for the Language object is usually called nlp:

import spacy
nlp = spacy.load('en_core_web_sm')
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This Language object now contains the shared vocabulary, the model, and the pro‐
cessing pipeline. You can check the pipeline components via this property of the
object:

nlp.pipeline

Out:

[('tagger', <spacy.pipeline.pipes.Tagger at 0x7fbd766f84c0>),
 ('parser', <spacy.pipeline.pipes.DependencyParser at 0x7fbd813184c0>),
 ('ner', <spacy.pipeline.pipes.EntityRecognizer at 0x7fbd81318400>)]

The default pipeline consists of a tagger, parser, and named-entity recognizer (ner),
all of which are language-dependent. The tokenizer is not explicitly listed because this
step is always necessary.

spaCy’s tokenizer is pretty fast, but all other steps are based on neural models and
consume a significant amount of time. Compared to other libraries, though, spaCy’s
models are among the fastest. Processing the whole pipeline takes about 10–20 times
as long as just tokenization, where each step is taking a similar share of the total time.
If tokenization of 1,000 documents takes, for example, one second, tagging, parsing,
and NER may each take an additional five seconds. This may become a problem if
you process big datasets. So, it’s better to switch off the parts that you don’t need.

Often you will only need the tokenizer and the part-of-speech tagger. In this case, you
should disable the parser and named-entity recognition like this:

nlp = spacy.load("en_core_web_sm", disable=["parser", "ner"])

If you just want the tokenizer and nothing else, you can also simply call
nlp.make_doc on a text.

Processing Text
The pipeline is executed by calling the nlp object. The call returns an object of type
spacy.tokens.doc.Doc, a container to access the tokens, spans (ranges of tokens),
and their linguistic annotations.

nlp = spacy.load("en_core_web_sm")
text = "My best friend Ryan Peters likes fancy adventure games."
doc = nlp(text)

spaCy is object-oriented as well as nondestructive. The original text is always
retained. When you print the doc object, it uses doc.text, the property containing
the original text. But doc is also a container object for the tokens, and you can use it
as an iterator for them:

for token in doc:
    print(token, end="|")
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Out:

My|best|friend|Ryan|Peters|likes|fancy|adventure|games|.|

Each token is actually an object of spaCy’s class Token. Tokens, as well as docs, have a
number of interesting properties for language processing. Table 4-2 shows which of
these properties are created by each pipeline component.7

Table 4-2. Selection of attributes created by spaCy’s built-in pipeline

Component Creates
Tokenizer Token.is_punct, Token.is_alpha, Token.like_email, Token.like_url
Part-of-speech tagger Token.pos_

Dependency parser Token.dep_, Token.head, Doc.sents, Doc.noun_chunks
Named-entity recognizer Doc.ents, Token.ent_iob_, Token.ent_type_

We provide a small utility function, display_nlp, to generate a table containing the
tokens and their attributes. Internally, we create a DataFrame for this and use the
token position in the document as an index. Punctuation characters are skipped by
default in this function. Table 4-3 shows the output of this function for our example
sentence:

def display_nlp(doc, include_punct=False):
    """Generate data frame for visualization of spaCy tokens."""
    rows = []
    for i, t in enumerate(doc):
        if not t.is_punct or include_punct:
            row = {'token': i,  'text': t.text, 'lemma_': t.lemma_,
                   'is_stop': t.is_stop, 'is_alpha': t.is_alpha,
                   'pos_': t.pos_, 'dep_': t.dep_,
                   'ent_type_': t.ent_type_, 'ent_iob_': t.ent_iob_}
            rows.append(row)

    df = pd.DataFrame(rows).set_index('token')
    df.index.name = None
    return df

Table 4-3. Result of spaCy’s document processing as generated by display_nlp

text lemma_ is_stop is_alpha pos_ dep_ ent_type_ ent_iob_

0 My -PRON- True True DET poss O

1 best good False True ADJ amod O

2 friend friend False True NOUN nsubj O

3 Ryan Ryan False True PROPN compound PERSON B
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8 See spaCy’s API for a complete list of attributes.

text lemma_ is_stop is_alpha pos_ dep_ ent_type_ ent_iob_

4 Peters Peters False True PROPN appos PERSON I

5 likes like False True VERB ROOT O

6 fancy fancy False True ADJ amod O

7 adventure adventure False True NOUN compound O

8 games game False True NOUN dobj O

For each token, you find the lemma, some descriptive flags, the part-of-speech tag,
the dependency tag (not used here, but in Chapter 12), and possibly some informa‐
tion about the entity type. The is_<something> flags are created based on rules, but
all part-of-speech, dependency, and named-entity attributes are based on neural net‐
work models. So, there is always some degree of uncertainty in this information. The
corpora used for training contain a mixture of news articles and online articles. The
predictions of the model are fairly accurate if your data has similar linguistic charac‐
teristics. But if your data is very different—if you are working with Twitter data or
IT service desk tickets, for example—you should be aware that this information is
unreliable.

spaCy uses the convention that token attributes with an underscore
like pos_ yield the readable textual representation. pos without an
underscore returns spaCy’s numeric identifier of a part-of-speech
tag.8 The numeric identifiers can be imported as constants, e.g.,
spacy.symbols.VERB. Make sure not to mix them up!

Blueprint: Customizing Tokenization
Tokenization is the first step in the pipeline, and everything depends on
the correct tokens. spaCy’s tokenizer does a good job in most cases, but it
splits on hash signs, hyphens, and underscores, which is sometimes not

what you want. Therefore, it may be necessary to adjust its behavior. Let’s look at the
following text as an example:

text = "@Pete: choose low-carb #food #eat-smart. _url_ ;-) 😋👍"
doc = nlp(text)

for token in doc:
    print(token, end="|")
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9 See spaCy’s tokenization usage docs for details and an illustrative example.
10 See spaCy’s tokenizer usage docs for details.

Out:

@Pete|:|choose|low|-|carb|#|food|#|eat|-|smart|.|_|url|_|;-)|😋|👍|

spaCy’s tokenizer is completely rule-based. First, it splits the text on whitespace char‐
acters. Then it uses prefix, suffix, and infix splitting rules defined by regular expres‐
sions to further split the remaining tokens. Exception rules are used to handle
language-specific exceptions like can’t, which should be split into ca and n’t with lem‐
mas can and not.9

As you can see in the example, spaCy’s English tokenizer contains an infix rule for
splits at hyphens. In addition, it has a prefix rule to split off characters like # or _. It
works well for tokens prefixed with @ and emojis, though.

One option is to merge tokens in a postprocessing step using doc.retokenize. How‐
ever, that will not fix any miscalculated part-of-speech tags and syntactical dependen‐
cies because these rely on tokenization. So it may be better to change the tokenization
rules and create correct tokens in the first place.

The best approach for this is to create your own variant of the tokenizer with individ‐
ual rules for infix, prefix, and suffix splitting.10 The following function creates a
tokenizer object with individual rules in a “minimally invasive” way: we just drop the
respective patterns from spaCy’s default rules but retain the major part of the logic:

from spacy.tokenizer import Tokenizer
from spacy.util import compile_prefix_regex, \
                       compile_infix_regex, compile_suffix_regex

def custom_tokenizer(nlp):

    # use default patterns except the ones matched by re.search
    prefixes = [pattern for pattern in nlp.Defaults.prefixes
                if pattern not in ['-', '_', '#']]
    suffixes = [pattern for pattern in nlp.Defaults.suffixes
                if pattern not in ['_']]
    infixes  = [pattern for pattern in nlp.Defaults.infixes
                if not re.search(pattern, 'xx-xx')]

    return Tokenizer(vocab          = nlp.vocab,
                     rules          = nlp.Defaults.tokenizer_exceptions,
                     prefix_search  = compile_prefix_regex(prefixes).search,
                     suffix_search  = compile_suffix_regex(suffixes).search,
                     infix_finditer = compile_infix_regex(infixes).finditer,
                     token_match    = nlp.Defaults.token_match)

nlp = spacy.load('en_core_web_sm')
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11 Modifying the stop word list this way will probably become deprecated with spaCy 3.0. Instead, it is recom‐
mended to create a modified subclass of the respective language class. See the GitHub notebook for this chap‐
ter for details.

nlp.tokenizer = custom_tokenizer(nlp)

doc = nlp(text)
for token in doc:
    print(token, end="|")

Out:

@Pete|:|choose|low-carb|#food|#eat-smart|.|_url_|;-)|😋|👍|

Be careful with tokenization modifications because their effects can
be subtle, and fixing a set of cases can break another set of cases.
For example, with our modification, tokens like Chicago-based
won’t be split anymore. In addition, there are several Unicode char‐
acters for hyphens and dashes that could cause problems if they
have not been normalized.

Blueprint: Working with Stop Words
spaCy uses language-specific stop word lists to set the is_stop property
for each token directly after tokenization. Thus, filtering stop words (and
similarly punctuation tokens) is easy:

text = "Dear Ryan, we need to sit down and talk. Regards, Pete"
doc = nlp(text)

non_stop = [t for t in doc if not t.is_stop and not t.is_punct]
print(non_stop)

Out:

[Dear, Ryan, need, sit, talk, Regards, Pete]

The list of English stop words with more than 300 entries can be accessed by import‐
ing spacy.lang.en.STOP_WORDS. When an nlp object is created, this list is loaded and
stored under nlp.Defaults.stop_words. We can modify spaCy’s default behavior by
setting the is_stop property of the respective words in spaCy’s vocabulary:11

nlp = spacy.load('en_core_web_sm')
nlp.vocab['down'].is_stop = False
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12 See Universal Part-of-speech tags for more.

nlp.vocab['Dear'].is_stop = True
nlp.vocab['Regards'].is_stop = True

If we rerun the previous example, we get the following result:

[Ryan, need, sit, down, talk, Pete]

Blueprint: Extracting Lemmas Based on Part of Speech
Lemmatization is the mapping of a word to its uninflected root. Treating
words like housing, housed, and house as the same has many advantages
for statistics, machine learning, and information retrieval. It can not only

improve the quality of the models but also decrease training time and model size
because the vocabulary is much smaller if only uninflected forms are kept. In addi‐
tion, it is often helpful to restrict the types of the words used to certain categories,
such as nouns, verbs, and adjectives. Those word types are called part-of-speech tags.

Let’s first take a closer look at lemmatization. The lemma of a token or span can be
accessed by the lemma_ property, as illustrated in the following example:

text = "My best friend Ryan Peters likes fancy adventure games."
doc = nlp(text)

print(*[t.lemma_ for t in doc], sep='|')

Out:

-PRON-|good|friend|Ryan|Peters|like|fancy|adventure|game|.

The correct assignment of the lemma requires a lookup dictionary and knowledge
about the part of speech of a word. For example, the lemma of the noun meeting is
meeting, while the lemma of the verb is meet. In English, spaCy is able to make this
distinction. In most other languages, however, lemmatization is purely dictionary-
based, ignoring the part-of-speech dependency. Note that personal pronouns like I,
me, you, and her always get the lemma -PRON- in spaCy.

The other token attribute we will use in this blueprint is the part-of-speech tag.
Table 4-3 shows that each token in a spaCy doc has two part-of-speech attributes:
pos_ and tag_. tag_ is the tag from the tagset used to train the model. For spaCy’s
English models, which have been trained on the OntoNotes 5 corpus, this is the Penn
Treebank tagset. For a German model, this would be the Stuttgart-Tübingen tagset.
The pos_ attribute contains the simplified tag of the universal part-of-speech tagset.12
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We recommend using this attribute as the values will remain stable across different
models. Table 4-4 shows the complete tag set descriptions.

Table 4-4. Universal part-of-speech tags

Tag Description Examples
ADJ Adjectives (describe nouns) big, green, African
ADP Adpositions (prepositions and postpositions) in, on
ADV Adverbs (modify verbs or adjectives) very, exactly, always
AUX Auxiliary (accompanies verb) can (do), is (doing)
CCONJ Connecting conjunction and, or, but
DET Determiner (with regard to nouns) the, a, all (things), your (idea)
INTJ Interjection (independent word, exclamation, expression of emotion) hi, yeah
NOUN Nouns (common and proper) house, computer
NUM Cardinal numbers nine, 9, IX
PROPN Proper noun, name, or part of a name Peter, Berlin
PRON Pronoun, substitute for noun I, you, myself, who
PART Particle (makes sense only with other word)
PUNCT Punctuation characters , . ;
SCONJ Subordinating conjunction before, since, if
SYM Symbols (word-like) $, ©
VERB Verbs (all tenses and modes) go, went, thinking
X Anything that cannot be assigned grlmpf

Part-of-speech tags are an excellent alternative to stop words as word filters. In lin‐
guistics, pronouns, prepositions, conjunctions, and determiners are called function
words because their main function is to create grammatical relationships within a
sentence. Nouns, verbs, adjectives, and adverbs are content words, and the meaning
of a sentence depends mainly on them.

Often, we are interested only in content words. Thus, instead of using a stop word
list, we can use part-of-speech tags to select the word types we are interested in and
discard the rest. For example, a list containing only the nouns and proper nouns in a
doc can be generated like this:

text = "My best friend Ryan Peters likes fancy adventure games."
doc = nlp(text)

nouns = [t for t in doc if t.pos_ in ['NOUN', 'PROPN']]
print(nouns)

Out:

[friend, Ryan, Peters, adventure, games]
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We could easily define a more general filter function for this purpose, but textacy’s
extract.words function conveniently provides this functionality. It also allows us to
filter on part of speech and additional token properties such as is_punct or is_stop.
Thus, the filter function allows both part-of-speech selection and stop word filtering.
Internally it works just like we illustrated for the noun filter shown previously.

The following example shows how to extract tokens for adjectives and nouns from
the sample sentence:

import textacy

tokens = textacy.extract.words(doc,
            filter_stops = True,           # default True, no stopwords
            filter_punct = True,           # default True, no punctuation
            filter_nums = True,            # default False, no numbers
            include_pos = ['ADJ', 'NOUN'], # default None = include all
            exclude_pos = None,            # default None = exclude none
            min_freq = 1)                  # minimum frequency of words

print(*[t for t in tokens], sep='|')

Out:

best|friend|fancy|adventure|games

Our blueprint function to extract a filtered list of word lemmas is finally just a tiny
wrapper around that function. By forwarding the keyword arguments (**kwargs),
this function accepts the same parameters as textacy’s extract.words.

def extract_lemmas(doc, **kwargs):
    return [t.lemma_ for t in textacy.extract.words(doc, **kwargs)]

lemmas = extract_lemmas(doc, include_pos=['ADJ', 'NOUN'])
print(*lemmas, sep='|')

Out:

good|friend|fancy|adventure|game

Using lemmas instead of inflected words is often a good idea, but
not always. For example, it can have a negative effect on sentiment
analysis where “good” and “best” make a difference.
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Blueprint: Extracting Noun Phrases
In Chapter 1 we illustrated how to use n-grams for analysis. n-grams are
simple enumerations of subsequences of n words in a sentence. For exam‐
ple, the sentence we used earlier contains the following bigrams:

My_best|best_friend|friend_Ryan|Ryan_Peters|Peters_likes|likes_fancy
fancy_adventure|adventure_games

Many of those bigrams are not very useful for analysis, for example, likes_fancy or
my_best. It would be even worse for trigrams. But how can we detect word sequences
that have real meaning? One way is to apply pattern-matching on the part-of-speech
tags. spaCy has a quite powerful rule-based matcher, and textacy has a convenient
wrapper for pattern-based phrase extraction. The following pattern extracts sequen‐
ces of nouns with a preceding adjective:

text = "My best friend Ryan Peters likes fancy adventure games."
doc = nlp(text)

patterns = ["POS:ADJ POS:NOUN:+"]
spans = textacy.extract.matches(doc, patterns=patterns)
print(*[s.lemma_ for s in spans], sep='|')

Out:

good friend|fancy adventure|fancy adventure game

Alternatively, you could use spaCy’s doc.noun_chunks for noun phrase extraction.
However, as the returned chunks can also include pronouns and determiners, this
function is less suited for feature extraction:

print(*doc.noun_chunks, sep='|')

Out:

My best friend|Ryan Peters|fancy adventure games

Thus, we define our blueprint for noun phrase extraction based on part-of-speech
patterns. The function takes a doc, a list of part-of-speech tags, and a separator char‐
acter to join the words of the noun phrase. The constructed pattern searches for
sequences of nouns that are preceded by a token with one of the specified part-of-
speech tags. Returned are the lemmas. Our example extracts all phrases consisting of
an adjective or a noun followed by a sequence of nouns:

def extract_noun_phrases(doc, preceding_pos=['NOUN'], sep='_'):
    patterns = []
    for pos in preceding_pos:
        patterns.append(f"POS:{pos} POS:NOUN:+")
    spans = textacy.extract.matches(doc, patterns=patterns)
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    return [sep.join([t.lemma_ for t in s]) for s in spans]

print(*extract_noun_phrases(doc, ['ADJ', 'NOUN']), sep='|')

Out:

good_friend|fancy_adventure|fancy_adventure_game|adventure_game

Blueprint: Extracting Named Entities
Named-entity recognition refers to the process of detecting entities such as
people, locations, or organizations in text. Each entity can consist of one
or more tokens, like San Francisco. Therefore, named entities are repre‐

sented by Span objects. As with noun phrases, it can be helpful to retrieve a list of
named entities for further analysis.

If you look again at Table 4-3, you see the token attributes for named-entity recogni‐
tion, ent_type_ and ent_iob_. ent_iob_ contains the information if a token begins
an entity (B), is inside an entity (I), or is outside (O). Instead of iterating through the
tokens, we can also access the named entities directly with doc.ents. Here, the prop‐
erty for the entity type is called label_. Let’s illustrate this with an example:

text = "James O'Neill, chairman of World Cargo Inc, lives in San Francisco."
doc = nlp(text)

for ent in doc.ents:
    print(f"({ent.text}, {ent.label_})", end=" ")

Out:

(James O'Neill, PERSON) (World Cargo Inc, ORG) (San Francisco, GPE)

spaCy’s displacy module also provides visualization for the named-entity recogni‐
tion, which makes the result much more readable and visually supports the identifi‐
cation of misclassified entities:

from spacy import displacy

displacy.render(doc, style='ent')

The named entities were identified correctly as a person, an organization, and a geo-
political entity (GPE). But be aware that the accuracy for named-entity recognition
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may not be very good if your corpus is missing a clear grammatical structure. Check
out “Named-Entity Recognition” on page 327 for a detailed discussion.

For the extraction of named entities of certain types, we again make use of one of tex‐
tacy’s convenient functions:

def extract_entities(doc, include_types=None, sep='_'):

    ents = textacy.extract.entities(doc,
             include_types=include_types,
             exclude_types=None,
             drop_determiners=True,
             min_freq=1)

    return [sep.join([t.lemma_ for t in e])+'/'+e.label_ for e in ents]

With this function we can, for example, retrieve the named entities of types PERSON
and GPE (geo-political entity) like this:

print(extract_entities(doc, ['PERSON', 'GPE']))

Out:

["James_O'Neill/PERSON", 'San_Francisco/GPE']

Feature Extraction on a Large Dataset
Now that we know the tools spaCy provides, we can finally build our linguistic fea‐
ture extractor. Figure 4-3 illustrates what we are going to do. In the end, we want to
create a dataset that can be used as input to statistical analysis and various machine
learning algorithms. Once extracted, we will persist the preprocessed data “ready to
use” in a database.

Figure 4-3. Feature extraction from text with spaCy.
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Blueprint: Creating One Function to Get It All
This blueprint function combines all the extraction functions from the
previous section. It neatly puts everything we want to extract in one place
in the code so that the subsequent steps do not need to be adjusted if you

add or change something here:

def extract_nlp(doc):
    return {
    'lemmas'          : extract_lemmas(doc,
                                     exclude_pos = ['PART', 'PUNCT',
                                        'DET', 'PRON', 'SYM', 'SPACE'],
                                     filter_stops = False),
    'adjs_verbs'      : extract_lemmas(doc, include_pos = ['ADJ', 'VERB']),
    'nouns'           : extract_lemmas(doc, include_pos = ['NOUN', 'PROPN']),
    'noun_phrases'    : extract_noun_phrases(doc, ['NOUN']),
    'adj_noun_phrases': extract_noun_phrases(doc, ['ADJ']),
    'entities'        : extract_entities(doc, ['PERSON', 'ORG', 'GPE', 'LOC'])
    }

The function returns a dictionary with everything we want to extract, as shown in
this example:

text = "My best friend Ryan Peters likes fancy adventure games."
doc = nlp(text)
for col, values in extract_nlp(doc).items():
    print(f"{col}: {values}")

Out:

lemmas: ['good', 'friend', 'Ryan', 'Peters', 'like', 'fancy', 'adventure', \
         'game']
adjs_verbs: ['good', 'like', 'fancy']
nouns: ['friend', 'Ryan', 'Peters', 'adventure', 'game']
noun_phrases: ['adventure_game']
adj_noun_phrases: ['good_friend', 'fancy_adventure', 'fancy_adventure_game']
entities: ['Ryan_Peters/PERSON']

The list of returned column names is needed for the next steps. Instead of hard-
coding it, we just call extract_nlp with an empty document to retrieve the list:

nlp_columns = list(extract_nlp(nlp.make_doc('')).keys())
print(nlp_columns)

Out:

['lemmas', 'adjs_verbs', 'nouns', 'noun_phrases', 'adj_noun_phrases', 'entities']
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Blueprint: Using spaCy on a Large Dataset
Now we can use this function to extract features from all the records of a
dataset. We take the cleaned texts that we created and saved at the begin‐
ning of this chapter and add the titles:

db_name = "reddit-selfposts.db"
con = sqlite3.connect(db_name)
df = pd.read_sql("select * from posts_cleaned", con)
con.close()

df['text'] = df['title'] + ': ' + df['text']

Before we start NLP processing, we initialize the new DataFrame columns we want to
fill with values:

for col in nlp_columns:
    df[col] = None

spaCy’s neural models benefit from running on GPU. Thus, we try to load the model
on the GPU before we start:

if spacy.prefer_gpu():
    print("Working on GPU.")
else:
    print("No GPU found, working on CPU.")

Now we have to decide which model and which of the pipeline components to use.
Remember to disable unneccesary components to improve runtime! We stick to the
small English model with the default pipeline and use our custom tokenizer that
splits on hyphens:

nlp = spacy.load('en_core_web_sm', disable=[])
nlp.tokenizer = custom_tokenizer(nlp) # optional

When processing larger datasets, it is recommended to use spaCy’s batch processing
for a significant performance gain (roughly factor 2 on our dataset). The function
nlp.pipe takes an iterable of texts, processes them internally as a batch, and yields a
list of processed Doc objects in the same order as the input data.

To use it, we first have to define a batch size. Then we can loop over the batches and
call nlp.pipe.

batch_size = 50

for i in range(0, len(df), batch_size):
    docs = nlp.pipe(df['text'][i:i+batch_size])

    for j, doc in enumerate(docs):
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        for col, values in extract_nlp(doc).items():
            df[col].iloc[i+j] = values

In the inner loop we extract the features from the processed doc and write the values
back into the DataFrame. The whole process takes about six to eight minutes on the
dataset without using a GPU and about three to four minutes with the GPU on 
Colab.

The newly created columns are perfectly suited for frequency analysis with the func‐
tions from Chapter 1. Let’s check for the most frequently mentioned noun phrases in
the autos category:

count_words(df, 'noun_phrases').head(10).plot(kind='barh').invert_yaxis()

Out:

Persisting the Result
Finally, we save the complete DataFrame to SQLite. To do so, we need to serialize the
extracted lists to space-separated strings, as lists are not supported by most databases:

df[nlp_columns] = df[nlp_columns].applymap(lambda items: ' '.join(items))

con = sqlite3.connect(db_name)
df.to_sql("posts_nlp", con, index=False, if_exists="replace")
con.close()

The resulting table provides a solid and ready-to-use basis for further analyses. In
fact, we will use this data again in Chapter 10 to train word embeddings on the
extracted lemmas. Of course, the preprocessing steps depend on what you are going
to do with the data. Working with sets of words like those produced by our blueprint
is perfect for any kind of statistical analysis on word frequencies and machine
learning based on a bag-of-words vectorization. You will need to adapt the steps for
algorithms that rely on knowledge about word sequences.
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A Note on Execution Time
Complete linguistic processing is really time-consuming. In fact, processing just the
20,000 Reddit posts with spaCy takes several minutes. A simple regexp tokenizer, in
contrast, takes only a few seconds to tokenize all records on the same machine. It’s the
tagging, parsing, and named-entity recognition that’s expensive, even though spaCy is
really fast compared to other libraries. So if you don’t need named entities, you
should definitely disable the parser and name-entity recognition to save more than
60% of the runtime.

Processing the data in batches with nlp.pipe and using GPUs is one way to speed up
data processing for spaCy. But data preparation in general is also a perfect candidate
for parallelization. One option to parallelize tasks in Python is using the library multi
processing. Especially for the parallelization of operations on dataframes, there are
some scalable alternatives to Pandas worth checking, namely Dask, Modin, and Vaex.
pandarallel is a library that adds parallel apply operators directly to Pandas.

In any case, it is helpful to watch the progress and get a runtime estimate. As already 
mentioned in Chapter 1, the tqdm library is a great tool for that purpose because it
provides progress bars for iterators and dataframe operations. Our notebooks on Git‐
Hub use tqdm whenever possible.

There Is More
We started out with data cleaning and went through a whole pipeline of linguistic
processing. Still, there some aspects that we didn’t cover in detail but that may be
helpful or even necessary in your projects.

Language Detection
Many corpora contain text in different languages. Whenever you are working with a
multilingual corpus, you have to decide on one of these options:

• Ignore other languages if they represent a negligible minority, and treat every text
as if it were of the corpus’s major language, e.g., English.

• Translate all texts to the main language, for example, by using Google Translate.
• Identify the language and do language-dependent preprocessing in the next

steps.

There are good libraries for language detection. Our recommendation is Facebook’s
fastText library. fastText provides a pretrained model that identifies 176 languages
really fast and accurately. We provide an additional blueprint for language detection
with fastText in the GitHub repository for this chapter.
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textacy’s make_spacy_doc function allows you to automatically load the respective
language model for linguistic processing if available. By default, it uses a language
detection model based on Google’s Compact Language Detector v3, but you could
also hook in any language detection function (for example, fastText).

Spell-Checking
User-generated content suffers from a lot of misspellings. It would be great if a spell-
checker could automatically correct these errors. SymSpell is a popular spell-checker
with a Python port. However, as you know from your smartphone, automatic spelling
correction may itself introduce funny artifacts. So, you should definitely check
whether the quality really improves.

Token Normalization
Often, there are different spellings for identical terms or variations of terms that you
want to treat and especially count identically. In this case, it is useful to normalize
these terms and map them to a common standard. Here are some examples:

• U.S.A. or U.S. → USA
• dot-com bubble → dotcom bubble
• München → Munich

You could use spaCy’s phrase matcher to integrate this kind of normalization as a
post-processing step into its pipeline. If you don’t use spaCy, you can use a simple
Python dictionary to map different spellings to their normalized forms.

Closing Remarks and Recommendations
“Garbage in, garbage out” is a frequently cited problem in data projects. This is espe‐
cially true for textual data, which is inherently noisy. Therefore, data cleaning is one
of the most important tasks in any text analysis project. Spend enough effort to
ensure high data quality and check it systematically. We have shown many solutions
to identify and resolve quality issues in this section.

The second prerequisite for reliable analyses and robust models is normalization.
Many machine learning algorithms for text are based on the bag-of-words model,
which generates a notion of similarity between documents based on word frequen‐
cies. In general, you are better off with lemmatized text when you do text classifica‐
tion, topic modeling, or clustering based on TF-IDF. You should avoid or use only
sparingly those kinds of normalization or stop word removal for more complex
machine learning tasks such as text summarization, machine translation, or question
answering where the model needs to reflect the variety of the language.
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CHAPTER 5

Feature Engineering and
Syntactic Similarity

As we saw in Chapter 1, text is significantly different from structured data. One of the
most striking differences is that text is represented by words, while structured data
(mostly) uses numbers. From a scientific point of view, centuries of mathematical
research have led to an extremely good understanding of numbers and sophisticated
methods. Information science has picked up that mathematical research, and many
creative algorithms have been invented on top of that. Recent advances in machine
learning have generalized a lot of formerly very specific algorithms and made them
applicable to many different use cases. These methods “learn” directly from data and
provide an unbiased view.

To use these instruments, we have to find a mapping of text to numbers. Considering
the richness and complexity of text, it is clear that a single number will not be enough
to represent the meaning of a document. Something more complex is needed. The 
natural extension of real numbers in mathematics is a tuple of real numbers, called
a vector. Almost all text representations in text analytics and machine learning use
vectors; see Chapter 6 for more.

Vectors live in a vector space, and most vector spaces have additional properties such
as norms and distances, which will be helpful for us as they imply the concept of sim‐
ilarity. As we will see in subsequent chapters, measuring the similarity between docu‐
ments is absolutely crucial for most text analytics applications, but it is also
interesting on its own.
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1 In later chapters, we will take a look at other possibilities of vectorizing words (Chapter 10) and documents
(Chapter 11).

What You’ll Learn and What We’ll Build
In this chapter we talk about the vectorization of documents. This means we will con‐
vert unstructured text into vectors that contain numbers.

There are quite a few ways to vectorize documents. As document vectorization is the
basis for all machine learning tasks, we will spend some time designing and imple‐
menting our own vectorizer. You can use that as a blueprint if you need a specialized
vectorizer for your own projects.

Afterward, we will focus on two popular models that are already implemented in
scikit-learn: the bag-of words model and the TF-IDF improvements to it. We will
download a large dataset of documents and vectorize it with these methods. As you
will see, there can be many problems that are related to data volume and scalability.

Although vectorization is a base technology for more sophisticated machine learning
algorithms, it can also be used on its own to calculate similarities between documents.
We will take a detailed look at how this works, how it can be optimized, and how we
can make it scalable. For a richer representation of words, see Chapter 10, and for
a more contextualized approach, see Chapter 11.

After studying this chapter, you will understand how to convert documents to num‐
bers (vectors) using words or combinations as features.1 We will try different methods
of vectorizing documents, and you will be able to determine the correct method for
your use case. You will learn why the similarity of documents is important and a stan‐
dard way to calculate it. We will go into detail with an example that has many docu‐
ments and show how to vectorize them and calculate similarities effectively.

The first section introduces the concept of a vectorizer by actually building your own
simple one. This can be used as a blueprint for more sophisticated vectorizers that
you might have to build in your own projects. Counting word occurrences and using
them as vectors is called bag-of-words and already creates very versatile models.

Together with the dataset (which has more than 1,000,000 news headlines), we intro‐
duce a use case and present a scalable blueprint architecture in the TF-IDF section.
We will build a blueprint for vectorizing documents and a similarity search for docu‐
ments. Even more challenging, we will try to identify the most similar (but nonidenti‐
cal) headlines in this corpus.
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2 There are much more sophisticated algorithms for determining the vocabulary, like SentencePiece and BPE,
which are worth taking a look at if you want to reduce the number of features.

A Toy Dataset for Experimentation
Quite surprisingly, a lot of experiments have shown that for many text analytics prob‐
lems it is enough to know which words appear in documents. It is not necessary to
understand the meaning of the words or take word order into account. As the under‐
lying mappings are particularly easy and fast to calculate, we will start with these
mappings and use the words as features.

For the first blueprints, we will concentrate on the methods and therefore use a few
sentences from the novel A Tale of Two Cities by Charles Dickens as a toy dataset. We
will use the following sentences:

• It was the best of times.
• It was the worst of times.
• It was the age of wisdom.
• It was the age of foolishness.

Blueprint: Building Your Own Vectorizer
As vectorizing documents is the base for nearly all of the following chap‐
ters in this book, we take an in-depth look at how vectorizers work. This

works best by implementing our own vectorizer. You can use the methods in this sec‐
tion if you need to implement a custom vectorizer in your own projects or need to
adapt an existing vectorizer to your specific requirements.

To make it as simple as possible, we will implement a so-called one-hot vectorizer.
This vectorizer creates binary vectors from documents by noting if a word appears in
a document or not, yielding 1 or 0, respectively.

We will start by creating a vocabulary and assigning numbers to words, then perform
the vectorization, and finally analyze similarity in this binary space.

Enumerating the Vocabulary
Starting with the words as features, we have to find a way to convert words to the
dimensions of the vectors. Extracting the words from the text is done via tokeniza‐
tion, as explained in Chapter 2.2
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As we are interested only in whether a word appears in a document or not, we can
just enumerate the words:

sentences = ["It was the best of times",
             "it was the worst of times",
             "it was the age of wisdom",
             "it was the age of foolishness"]

tokenized_sentences = [[t for t in sentence.split()] for sentence in sentences]
vocabulary = set([w for s in tokenized_sentences for w in s])

import pandas as pd
pd.DataFrame([[w, i] for i,w in enumerate(vocabulary)])

Out:

It 0
age 1
best 2
foolishness 3
it 4
of 5
the 6
times 7
was 8
wisdom 9
worst 10

As you can see, the words have been numbered according to their first occurrence.
This is what we call a dictionary, consisting of words (the vocabulary) and their
respective numbers. Instead of having to refer to words, we can now use the numbers
and arrange them in the following vectors.

Vectorizing Documents
To compare vectors, calculate similarities, and so forth, we have to make sure that
vectors for each document have the same number of dimensions. To achieve that, we
use the same dictionary for all documents. If the document doesn’t contain a word,
we just put a 0 at the corresponding position; otherwise, we will use a 1. By conven‐
tion, row vectors are used for documents. The dimension of the vectors is as big
as the length of the dictionary. In our example, this is not a problem as we have
only a few words. However, in large projects, the vocabulary can easily exceed
100,000 words.
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Let’s calculate the one-hot encoding of all sentences before actually using a library
for this:

def onehot_encode(tokenized_sentence):
    return [1 if w in tokenized_sentence else 0 for w in vocabulary]

onehot = [onehot_encode(tokenized_sentence)
         for tokenized_sentence in tokenized_sentences]

for (sentence, oh) in zip(sentences, onehot):
    print("%s: %s" % (oh, sentence))

Out:

[0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1]: It was the best of times
[1, 1, 1, 0, 0, 0, 1, 1, 0, 1, 0]: it was the worst of times
[0, 1, 1, 0, 1, 0, 0, 1, 1, 1, 0]: it was the age of wisdom
[0, 1, 1, 1, 1, 0, 0, 1, 0, 1, 0]: it was the age of foolishness

For each sentence, we have now calculated a vector representation. Converting docu‐
ments to one-hot vectors, we have lost information about how often words occur in
documents and in which order.

Out-of-vocabulary documents
What happens if we try to keep the vocabulary fixed and add new documents? That
depends on whether the words of the documents are already contained in the dictio‐
nary. Of course, it can happen that all words are already known:

onehot_encode("the age of wisdom is the best of times".split())

Out:

[0, 1, 0, 0, 1, 0, 1, 0, 1, 1, 1]

However, the opposite is also quite possible. If we try to vectorize a sentence with
only unknown words, we get a null vector:

onehot_encode("John likes to watch movies. Mary likes movies too.".split())

Out:

[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]

This sentence does not “interact” with the other sentences in the corpus. From a strict
point of view, this sentence is not similar to any sentence in the corpus. This is no
problem for a single sentence; if this happens more frequently, the vocabulary or the
corpus needs to be adjusted.
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The Document-Term Matrix
Arranging the row vectors for each document in a matrix with the rows enumerating
the documents, we arrive at the document-term matrix. The document-term matrix
is the vector representation of all documents and the most basic building block for
nearly all machine learning tasks throughout this book. In this chapter, we will use it
for calculating document similarities:

pd.DataFrame(onehot, columns=vocabulary)

Out:

Be careful: using lists and arrays for the document-term matrix works best with a
small vocabulary. With large vocabularies, we will have to find a cleverer representa‐
tion. Scikit-learn takes care of this and uses so-called sparse vectors and matrices
from SciPy.

Calculating similarities
Calculating the similarities between documents works by calculating the number of
common 1s at the corresponding positions. In one-hot encoding, this is an extremely
fast operation, as it can be calculated on the bit level by ANDing the vectors and count‐
ing the number of 1s in the resulting vector. Let’s calculate the similarity of the first
two sentences:

sim = [onehot[0][i] & onehot[1][i] for i in range(0, len(vocabulary))]
sum(sim)

Out:

4

Another possible way to calculate the similarity that we will encounter frequently is
using scalar product (often called dot product) of the two document vectors. The
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3 Confusingly, numpy.dot is used both for the dot product (inner product) and for matrix multiplication. If
Numpy detects two row or column vectors (i.e., one-dimensional arrays) with the same dimension, it calcu‐
lates the dot product and yields a scalar. If not and the passed two-dimensional arrays are suitable for matrix
multiplication, it performs this operation and yields a matrix. All other cases produce errors. That’s conve‐
nient, but it’s a lot of heuristics.

scalar product is calculated by multiplying corresponding components of the two
vectors and adding up these products. By observing the fact that a product can only
be 1 if both factors are 1, we effectively calculate the number of common 1s in the
vectors. Let’s try it:

np.dot(onehot[0], onehot[1])

Out:

4

The Similarity Matrix
If we are interested in finding the similarity of all documents to each other, there is a
fantastic shortcut for calculating all the numbers with just one command! Generaliz‐
ing the formula from the previous section, we find the similarity of document i and
document j to be as follows:

Si j = di · d j

If we want to use the document-term matrix from earlier, we can write the scalar
product as a sum:

Si j = ∑k DikD jk = ∑k Dik DT
kj = D · DT

ij

So, this is just the matrix product of our document-term matrix with itself trans‐
posed. In Python, that’s now easy to calculate (the sentences in the output have been
added for easier checking the similarity):3

np.dot(onehot, np.transpose(onehot))

Out:

array([[6, 4, 3, 3],       # It was the best of times
       [4, 6, 4, 4],       # it was the worst of times
       [3, 4, 6, 5],       # it was the age of wisdom
       [3, 4, 5, 6]])      # it was the age of foolishness

Obviously, the highest numbers are on the diagonal, as each document is most similar
to itself. The matrix has to be symmetric, as document A has the same similarity to B
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as B to A. Apart from that, we can see that the second sentence is on average most
similar to all others, whereas the third and last document is the most similar pairwise
(they differ only by one word). The same would be true of the first and second docu‐
ments if we ignored case.

One-Hot Encoding with scikit-learn
As discussed earlier, the same vectorization can be achieved with scikit-learn.
Don’t be tempted to use OneHotEncoder, which is suitable only for categorical fea‐
tures. As each sentence has several words, the correct class to use in this case is
MultiLabelBinarizer:

from sklearn.preprocessing import MultiLabelBinarizer
lb = MultiLabelBinarizer()
lb.fit([vocabulary])
lb.transform(words)

Out:

array([[1, 0, 1, 0, 0, 1, 1, 1, 1, 0, 0],
       [0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 1],
       [0, 1, 0, 0, 1, 1, 1, 0, 1, 1, 0],
       [0, 1, 0, 1, 1, 1, 1, 0, 1, 0, 0]])

Here we can already see a pattern that is typical for scikit-learn. All vectorizers (and
many other classes) have a fit method and a transform method. The fit method
“learns” the vocabulary, whereas the transform method converts the documents to
vectors. Fortunately, we got the same results as in our own vectorizer.

Understanding how a document vectorizer works is crucial for implementing your
own, but it’s also helpful for appreciating all the functionalities and parameters of
existing vectorizers. This is why we have implemented our own. We have taken a
detailed look at the different stages of vectorization, starting with building a vocabu‐
lary and then converting the documents to binary vectors.

Afterward, we analyzed the similarity of the documents. It turned out that the dot
product of their corresponding vectors is a good measure for this similarity.

One-hot vectors are also used in practice, for example, in document classification and
clustering. However, scikit-learn also offers more sophisticated vectorizers, which we
will use in the next sections.
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4 See Chapter 8 for more on LDA.

Bag-of-Words Models
One-hot encoding has already provided us with a basic representation of documents
as vectors. However, it did not take care of words appearing many times in docu‐
ments. If we want to calculate the frequency of words for each document, then we
should use what is called a bag-of-words representation.

Although somewhat simplistic, these models are in wide use. For cases such as classi‐
fication and sentiment detection, they work reasonably. Moreover, there are topic
modeling methods like Latent Dirichlet Allocation (LDA), which explicitly requires a
bag-of-words model.4

Blueprint: Using scikit-learn’s CountVectorizer
Instead of implementing a bag-of-words model on our own, we use the
algorithm that scikit-learn provides.

Notice that the corresponding class is called CountVectorizer, which is our first
encounter with feature extraction in scikit-learn. We will take a detailed look at the
design of the classes and in which order their methods should be called:

from sklearn.feature_extraction.text import CountVectorizer
cv = CountVectorizer()

Our example sentences from the one-hot encoder is really trivial, as no sentence in
our dataset contains words more than once. Let’s add some more sentences and use
that as a basis for the CountVectorizer:

more_sentences = sentences + \
                 ["John likes to watch movies. Mary likes movies too.",
                  "Mary also likes to watch football games."]

CountVectorizer works in two distinct phases: first it has to learn the vocabulary;
afterward it can transform the documents to vectors.

Fitting the vocabulary
First, it needs to learn about the vocabulary. This is simpler now, as we can just pass
the array with the sentences:

cv.fit(more_sentences)

CountVectorizer(analyzer='word', binary=False, decode_error='strict',
                dtype=<class 'numpy.int64'>, encoding='utf-8', input='content',
                lowercase=True, max_df=1.0, max_features=None, min_df=1,
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                ngram_range=(1, 1), preprocessor=None, stop_words=None,
                strip_accents=None, token_pattern='(?u)\\b\\w\\w+\\b',
                tokenizer=None, vocabulary=None)

Don’t worry about all these parameters; we will talk about the important ones later.
Let’s first see what CountVectorizer used as vocabulary, which is called feature names
here:

print(cv.get_feature_names())

Out:

['age', 'also', 'best', 'foolishness', 'football', 'games',
 'it',  'john', 'likes', 'mary', 'movies', 'of', 'the', 'times',
 'to', 'too', 'was', 'watch', 'wisdom', 'worst']

We have created a vocabulary and so-called features using CountVectorizer. Con‐
veniently, the vocabulary is sorted alphabetically, which makes it easier for us to
decide whether a specific word is included.

Transforming the documents to vectors

In the second step, we will use CountVectorizer to transform the documents to the
vector representation:

dt = cv.transform(more_sentences)

The result is the document-term matrix that we have already encountered in the pre‐
vious section. However, it is a different object, as CountVectorizer has created a
sparse matrix. Let’s check:

dt

Out:

<6x20 sparse matrix of type '<class 'numpy.int64'>'
with 38 stored elements in Compressed Sparse Row format>

Sparse matrices are extremely efficient. Instead of storing 6 × 20 = 120 elements, it
just has to save 38! Sparse matrices achieve that by skipping all zero elements.

Let’s try to recover our former document-term matrix. For this, we must transform
the sparse matrix to a (dense) array. To make it easier to read, we convert it into a
Pandas DataFrame:

pd.DataFrame(dt.toarray(), columns=cv.get_feature_names())
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Out:

The document-term matrix looks very similar to the one from our one-hot vectorizer.
Note, however, that the columns are in alphabetical order, and observe several 2s in
the fifth row. This originates from the document "John likes to watch movies.
Mary likes movies too.", which has many duplicate words.

Blueprint: Calculating Similarities
Finding similarities between documents is now more difficult as it is not
enough to count the common 1s in the documents. In general, the num‐
ber of occurrences of each word can be bigger, and we have to take that

into account.  The dot product cannot be used for this, as it is also sensitive to the
length of the vector (the number of words in the documents). Also, a Euclidean dis‐
tance is not very useful in high-dimensional vector spaces. This is why most com‐
monly the angle between document vectors is used as a measure of similarity. The
cosine of the angle between two vectors is defined by the following:

cos �,� = � · �
� · �

=
∑aibi

∑aiai ∑bibi

Scikit-learn simplifies this calculation by offering a cosine_similarity utility func‐
tion. Let’s check the similarity of the first two sentences:

from sklearn.metrics.pairwise import cosine_similarity
cosine_similarity(dt[0], dt[1])

Out:

array([[0.83333333]])
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Compared to our handmade similarity in the earlier sections, cosine_similarity
offers some advantages, as it is properly normalized and can take only values between
0 and 1.

Calculating the similarity of all documents is of course also possible; scikit-learn has
optimized the cosine_similarity, so it is possible to directly pass matrices:

pd.DataFrame(cosine_similarity(dt, dt)))

Out:

 0 1 2 3 4 5

0 1.000000 0.833333 0.666667 0.666667 0.000000 0.000000

1 0.833333 1.000000 0.666667 0.666667 0.000000 0.000000

2 0.666667 0.666667 1.000000 0.833333 0.000000 0.000000

3 0.666667 0.666667 0.833333 1.000000 0.000000 0.000000

4 0.000000 0.000000 0.000000 0.000000 1.000000 0.524142

5 0.000000 0.000000 0.000000 0.000000 0.524142 1.000000

Again, the matrix is symmetric with the highest values on the diagonal. It’s also easy
to see that document pairs 0/1 and 2/3 are most similar. Documents 4/5 have no simi‐
larity at all to the other documents but have some similarity to each other. Taking a
look back at the sentences, this is exactly what one would expect.

Bag-of-words models are suitable for a variety of use cases. For classification, senti‐
ment detection, and many topic models, they create a bias toward the most frequent
words as they have the highest numbers in the document-term matrix. Often these
words do not carry much meaning and could be defined as stop words.

As these would be highly domain-specific, a more generic approach “punishes” words
that appear too often in the corpus of all documents. This is called a TF-IDF model
and will be discussed in the next section.

TF-IDF Models
In our previous example, many sentences started with the words “it was the time of.”
This contributed a lot to their similarity, but in reality, the actual information you get
by the words is minimal. TF-IDF will take care of that by counting the number of
total word occurrences. It will reduce weights of frequent words and at the same time
increase the weights of uncommon words. Apart from the information-theoretical
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5 See, for example, the definition of entropy as a measure of uncertainty and information. Basically, this says
that a low-probability value carries more information than a more likely value.

measure,5 this is also something that you can observe when reading documents: if
you encounter uncommon words, it is likely that the author wants to convey an
important message with them.

Optimized Document Vectors with TfidfTransformer
As we saw in Chapter 2, a better measure for information compared to counting is
calculating the inverted document frequency and using a penalty for very common
words. The TF-IDF weight can be calculated from the bag-of-words model. Let’s try
this again with the previous model and see how the weights of the document-term
matrix change:

from sklearn.feature_extraction.text import TfidfTransformer
tfidf = TfidfTransformer()
tfidf_dt = tfidf.fit_transform(dt)
pd.DataFrame(tfidf_dt.toarray(), columns=cv.get_feature_names())

Out:

As you can see, some words have been scaled to smaller values (like “it”), while others
have not been scaled down so much (like “wisdom”). Let’s see the effect on the simi‐
larity matrix:

pd.DataFrame(cosine_similarity(tfidf_dt, tfidf_dt))

Out:

 0 1 2 3 4 5

0 1.000000 0.675351 0.457049 0.457049 0.00000 0.00000

1 0.675351 1.000000 0.457049 0.457049 0.00000 0.00000

2 0.457049 0.457049 1.000000 0.675351 0.00000 0.00000
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 0 1 2 3 4 5

3 0.457049 0.457049 0.675351 1.000000 0.00000 0.00000

4 0.000000 0.000000 0.000000 0.000000 1.000000 0.43076

5 0.000000 0.000000 0.000000 0.000000 0.43076 1.000000

We get exactly the effect we have hoped for! Document pairs 0/1 and 2/3 are still very
similar, but the number has also decreased to a more reasonable level as the docu‐
ment pairs differ in significant words. The more common words now have lower
weights.

Introducing the ABC Dataset
As a real-word use case, we will take a dataset from Kaggle that contains news head‐
lines. Headlines originate from Australian news source ABC and are from 2003 to
2017. The CSV file contains only a timestamp and the headline without punctuation
in lowercase. We load the CSV file into a Pandas DataFrame and take a look at the
first few documents:

headlines = pd.read_csv("abcnews-date-text.csv", parse_dates=["publish_date"])
print(len(headlines))
headlines.head()

Out:

1103663

 publish_date headline_text

0 2003-02-19 aba decides against community broadcasting lic...

1 2003-02-19 act fire witnesses must be aware of defamation

2 2003-02-19 a g calls for infrastructure protection summit

3 2003-02-19 air nz staff in aust strike for pay rise

4 2003-02-19 air nz strike to affect australian travellers

There are 1,103,663  headlines in this dataset. Note that the headlines do not include
punctuation and are all transformed to lowercase. Apart from the text, the dataset
includes the publication date of each headline.

As we saw earlier, the TF-IDF vectors can be calculated using the bag-of-words model
(the count vectors in scikit-learn terminology). As it is so common to use TF-IDF
document vectors, scikit-learn has created a “shortcut” to skip the count vectors and
directly calculate the TF-IDF vectors. The corresponding class is called TfidfVector
izer, and we will use it next.
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In the following, we have also combined the calls to fit and to transform in fit_trans
form, which is convenient:

from sklearn.feature_extraction.text import TfidfVectorizer
tfidf = TfidfVectorizer()
dt = tfidf.fit_transform(headlines["headline_text"])

This might take a while, as so many documents have to be analyzed and vectorized.
Take a look at the dimensions of the document-term matrix:

dt

Out:

<1103663x95878 sparse matrix of type '<class 'numpy.float64'>'
with 7001357 stored elements in Compressed Sparse Row format>

The number of rows was expected, but the number of columns (the vocabulary) is
really large, with almost 100,000 words. Doing the math shows that a naive storage of
data would have led to  1,103,663 * 95,878 elements with 8 bytes per float and have
used roughly 788 GB RAM. This shows the incredible effectiveness of sparse matrices
as the real memory used is “only” 56,010,856 bytes (roughly 0.056 GB; found out via
dt.data.nbytes). It’s still a lot, but it’s manageable.

Calculating the similarity between two vectors is another story, though. Scikit-learn
(and SciPy as a basis) is highly optimized for working with sparse vectors, but it still
takes some time doing the sample calculation (similarities of the first 10,000
documents):

%%time
cosine_similarity(dt[0:10000], dt[0:10000])

Out:

CPU times: user 154 ms, sys: 261 ms, total: 415 ms

Wall time: 414 ms

array([[1.      , 0.      , 0.      , ..., 0.        , 0.        , 0.        ],
       [0.      , 1.      , 0.      , ..., 0.        , 0.        , 0.        ],
       [0.      , 0.      , 1.      , ..., 0.        , 0.        , 0.        ],
       ...,
       [0.      , 0.      , 0.      , ..., 1.        , 0.16913596, 0.16792138],
       [0.      , 0.      , 0.      , ..., 0.16913596, 1.        , 0.33258708],
       [0.      , 0.      , 0.      , ..., 0.16792138, 0.33258708, 1.        ]])

For machine learning in the next chapters, many of these linear algebra calculations
are necessary and have to be repeated over and over. Often operations scale quadrati‐
cally with the number of features (O(N2)). Optimizing the vectorization by removing
unnecessary features is therefore not only helpful for calculating the similarities but
also crucial for scalable machine learning.
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Blueprint: Reducing Feature Dimensions
We have now found features for our documents and used them to calcu‐
late document vectors. As we have seen in the example, the number of fea‐
tures can get quite large. Lots of machine learning algorithms are

computationally intensive and scale with the number of features, often even polyno‐
mially. One part of feature engineering is therefore focused on reducing these features
to the ones that are really necessary.

In this section, we show a blueprint for how this can be achieved and measure their
impact on the number of features.

Removing stop words
In the first place, we can think about removing the words that carry the least mean‐
ing. Although this is domain-dependent, there are lists of the most common English
words that common sense tells us can normally be neglected. These words are called
stop words. Common stop words are determiners, auxiliary verbs, and pronouns.
For a more detailed discussion, see Chapter 4. Be careful when removing stop words
as they can contain certain words that might carry a domain-specific meaning in
special texts!

This does not reduce the number of dimensions tremendously as there are only a few
hundred common stop words in almost any language. However, it should drastically
decrease the number of stored elements as stop words are so common. This leads
to less memory consumption and faster calculations, as fewer numbers need to be
multiplied.

Let’s use the standard spaCy stop words and check the effects on the document-term
matrix. Note that we pass stop words as a named parameter to the TfidfVectorizer:

from spacy.lang.en.stop_words import STOP_WORDS as stopwords
print(len(stopwords))
tfidf = TfidfVectorizer(stop_words=stopwords)
dt = tfidf.fit_transform(headlines["headline_text"])
dt

Out:

305
<1103663x95600 sparse matrix of type '<class 'numpy.float64'>'
with 5644186 stored elements in Compressed Sparse Row format>

With only 305 stop words, we managed to reduce the number of stored elements by
20%. The dimensions of the matrix are almost the same, with fewer columns due to
the 95,878 – 95,600 = 278 stop words that actually appeared in the headlines.
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Minimum frequency
Taking a look at the definition of the cosine similarity, we can easily see that
components can contribute only if both vectors have a nonzero value at the corre‐
sponding index. This means that we can neglect all words occurring less than twice!
TfidfVectorizer (and CountVectorizer) have a parameter for that called min_df.

tfidf = TfidfVectorizer(stop_words=stopwords, min_df=2)
dt = tfidf.fit_transform(headlines["headline_text"])
dt

Out:

<1103663x58527 sparse matrix of type '<class 'numpy.float64'>'
with 5607113 stored elements in Compressed Sparse Row format>

Obviously, there are a lot of words appearing just once (95,600 – 58,527 = 37,073).
Those words should also be stored only once; checking with the number of stored
elements, we should get the same result: 5,644,186 – 5,607,113 = 37,073. Performing
this kind of transformation, it is always useful to integrate such plausibility checks.

Losing Information

Be careful: by using min_df=2, we have not lost any information in
vectorizing the headlines of this document corpus. If we plan to
vectorize more documents later with the same vocabulary, we
might lose information, as words appearing again in the new docu‐
ments that were only present once in the original documents will
not be found in the vocabulary.

min_df can also take float values. This means that a word has to occur in a minimum
fraction of documents. Normally, this reduces the vocabulary drastically even for low
numbers of min_df:

tfidf = TfidfVectorizer(stop_words=stopwords, min_df=.0001)
dt = tfidf.fit_transform(headlines["headline_text"])
dt

Out:

<1103663x6772 sparse matrix of type '<class 'numpy.float64'>'
with 4816381 stored elements in Compressed Sparse Row format>

This transformation is probably too strict and reduces the vocabulary too far.
Depending on the number of documents, you should set min_df to a low integer and
check the effects on the vocabulary.
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6 This is, of course, related to the stop word list that has already been used. In news articles, the most common
words are stop words. In domain-specific texts, it might be completely different. Using stop words is often the
safer choice, as these lists have been curated.

Maximum frequency
Sometimes a text corpus might have a special vocabulary with lots of repeating terms
that are too specific to be contained in stop word lists. For this use case, scikit-learn
offers the max_df parameter, which eliminates terms occurring too often in the cor‐
pus. Let’s check how the dimensions are reduced when we eliminate all the words that
appear in at least 10% of the headlines:

tfidf = TfidfVectorizer(stop_words=stopwords, max_df=0.1)
dt = tfidf.fit_transform(headlines["headline_text"])
dt

Out:

<1103663x95600 sparse matrix of type '<class 'numpy.float64'>'
with 5644186 stored elements in Compressed Sparse Row format>

Setting max_df to a low value of 10% does not eliminate a single word!6 Our news
headlines are very diverse. Depending on the type of corpus you have, experimenting
with max_df can be quite useful. In any case, you should always check how the
dimensions change.

Blueprint: Improving Features by Making Them
More Specific
So far, we have only used the original words of the headlines and reduced
the number of dimensions by stop words and counting frequencies. We 

have not yet changed the features themselves. Using linguistic analysis, there are
more possibilities.

Performing linguistic analysis
Using spaCy, we can lemmatize all headlines and just keep the lemmas. This takes
some time, but we expect to find a smaller vocabulary. First, we have to perform a
linguistic analysis, which might take some time to finish (see Chapter 4 for more
details):

import spacy

nlp = spacy.load("en")
nouns_adjectives_verbs = ["NOUN", "PROPN", "ADJ", "ADV", "VERB"]
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for i, row in headlines.iterrows():
    doc = nlp(str(row["headline_text"]))
    headlines.at[i, "lemmas"] = " ".join([token.lemma_ for token in doc])
    headlines.at[i, "nav"] = " ".join([token.lemma_ for token in doc
                     if token.pos_ in nouns_adjectives_verbs])

Blueprint: Using Lemmas Instead of Words for Vectorizing Documents
Now, we can vectorize the data using the lemmas and see how the vocabulary
decreased:

tfidf = TfidfVectorizer(stop_words=stopwords)
dt = tfidf.fit_transform(headlines["lemmas"].map(str))
dt

Out:

<1103663x71921 sparse matrix of type '<class 'numpy.float64'>'
with 5053610 stored elements in Compressed Sparse Row format>

Saving almost 25,000 dimensions is a lot. In news headlines, lemmatizing the data
probably does not lose any information. In other use cases like those in Chapter 11,
it’s a completely different story.

Features, Dimensions, and Precision/Recall
Lemmatizing considerably reduces the vocabulary size. For news headlines, the tense,
for example, is not important. When interpreting a novel, it might play a crucial role,
however. Depending on your use case, you should think carefully about which
text/NLP transformation is useful.

Reducing the feature dimensions with min_df and max_df is also a double-sided
sword. Removing infrequent features might be good for a corpus, but if you add addi‐
tional documents, there might be too few features.

In later chapters, we will introduce precision and recall as quality metrics for infor‐
mation retrieval. We can then quantify the effects of reducing dimensions (with NLP
and vectorization tuning) and increasing dimensions (with bigrams, for example) by
observing the impact on these metrics.
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Blueprint: Limit Word Types
Using the data generated earlier, we can restrict ourselves to considering
just nouns, adjectives, and verbs for the vectorization, as prepositions,
conjugations, and so on are supposed to carry little meaning. This again

reduces the vocabulary:

tfidf = TfidfVectorizer(stop_words=stopwords)
dt = tfidf.fit_transform(headlines["nav"].map(str))
dt

Out:

<1103663x68426 sparse matrix of type '<class 'numpy.float64'>'
with 4889344 stored elements in Compressed Sparse Row format>

There’s not much to win here, which is probably due to the headlines mainly contain‐
ing nouns, adjectives, and verbs. But this might look totally different in your own
projects. Depending on the type of texts you are analyzing, restricting word types will
not only reduce the size of the vocabulary but will also lead to much lower noise. It’s a
good idea to try this with a small part of the corpus first to avoid long waiting times
due to the expensive linguistic analysis.

Blueprint: Remove Most Common Words
As we learned, removing frequent words can lead to document-term
matrices with far fewer entries. This is especially helpful when you per‐
form unsupervised learning, as you will normally not be interested in

common words that are common anyway.

To remove even more noise, we will now try to eliminate the most common English
words. Be careful, as there will normally also be words involved that might carry
important meaning. There are various lists with those words; they can easily be found
on the internet. The list from Google is rather popular and directly available on Git‐
Hub. Pandas can directly read the list if we tell it to be a CSV file without column
headers. We will then instruct the TfidfVectorizer to use that list as stop words:

top_10000 = pd.read_csv("https://raw.githubusercontent.com/first20hours/\
google-10000-english/master/google-10000-english.txt", header=None)
tfidf = TfidfVectorizer(stop_words=set(top_10000.iloc[:,0].values))
dt = tfidf.fit_transform(headlines["nav"].map(str))
dt

Out:
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7 It would be growing exponentially if all word combinations were possible and would be used. As this is
unlikely, the dimensions are growing subexponentially.

<1103663x61630 sparse matrix of type '<class 'numpy.float64'>'
with 1298200 stored elements in Compressed Sparse Row format>

As you can see, the matrix now has 3.5 million fewer stored elements. The vocabulary
shrunk by 68,426 – 61,630 = 6,796 words, so more than 3,000 of the most frequent
English words were not even used in the ABC headlines.

Removing frequent words is an excellent method to remove noise from the dataset
and concentrate on the uncommon words. However, you should be careful using this
from the beginning as even frequent words do have a meaning, and they might also
have a special meaning in your document corpus. We recommend performing such
analyses additionally but not exclusively.

Blueprint: Adding Context via N-Grams
So far, we have used only single words as features (dimensions of our
document vectors) as the basis for our vectorization. With this strategy,
we have lost a lot of context information. Using single words as features

does not respect the context in which the words appear. In later chapters we will learn
how to overcome that limitation with sophisticated models like word embeddings. In
our current example, we will use a simpler method and take advantage of word com‐
binations, so called n-grams. Two-word combinations are called bigrams; for three
words, they are called trigrams.

Fortunately, CountVectorizer and TfidfVectorizer have the corresponding
options. Contrary to the last few sections where we tried to reduce the vocabulary, we
now enhance the vocabulary with word combinations. There are many such combi‐
nations; their number (and vocabulary size) is growing almost exponentially with n.7

We will therefore be careful and start with bigrams:

tfidf = TfidfVectorizer(stop_words=stopwords, ngram_range=(1,2), min_df=2)
dt = tfidf.fit_transform(headlines["headline_text"])
print(dt.shape)
print(dt.data.nbytes)
tfidf = TfidfVectorizer(stop_words=stopwords, ngram_range=(1,3), min_df=2)
dt = tfidf.fit_transform(headlines["headline_text"])
print(dt.shape)
print(dt.data.nbytes)

Out:
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(1103663, 559961)
67325400
(1103663, 747988)
72360104

Increasing the feature dimensions from 95,600 to 2,335,132 or even 5,339,558 is quite
painful even though the RAM size has not grown too much. For some tasks that need
context-specific information (like sentiment analysis), n-grams are extremely useful.
It is always useful to keep an eye on the dimensions, though.

Combining n-grams with linguistic features and common words is also possible and
reduces the vocabulary size considerably:

tfidf = TfidfVectorizer(ngram_range=(1,2),
        stop_words=set(top_10000.iloc[:,0].values))
dt = tfidf.fit_transform(headlines["nav"].map(str))
dt

Out:

<1103663x385857 sparse matrix of type '<class 'numpy.float64'>'
with 1753239 stored elements in Compressed Sparse Row format>
Compared to the original bigram vectorization with min_df=2 above,
there are just 82,370 dimensions left from 67,325,400

Scikit-learn offers many different vectorizers. Normally, starting with TfidfVector
izer is a good idea, as it is one of the most versatile.

Options of TfidfVectorizer

TF-IDF can even be switched off so there is a seamless fallback to CountVectorizer.
Because of the many parameters, it can take some time to find the perfect set of
options.

Finding the correct set of features is often tedious and requires experimentation with
the (many) parameters of TfidfVectorizer, like min_df, max_df, or simplified text
via NLP. In our work, we have had good experiences with setting min_df to 5, for
example, and max_df to 0.7. In the end, this time is excellently invested as the results
will depend heavily on correct vectorization. There is no golden bullet, though, and
this feature engineering depends heavily on the use case and the planned use of the
vectors.

The TF-IDF method itself can be improved by using a subnormal term frequency or
normalizing the resulting vectors. The latter is useful for quickly calculating similari‐
ties, and we demonstrate its use later in the chapter. The former is mainly interesting
for long documents to avoid repeating words getting a too high-weight.

Think very carefully about feature dimensions.    In our previous examples, we have used
single words and bigrams as features. Depending on the use case, this might already
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be enough. This works well for texts with common vocabulary, like news. But often
you will encounter special vocabularies (for example, scientific publications or letters
to an insurance company), which will require more sophisticated feature engineering.

Keep number of dimensions in mind.    As we have seen, using parameters like
ngram_range can lead to large feature spaces. Apart from the RAM usage, this will
also be a problem for many machine learning algorithms due to overfitting. There‐
fore, it’s a good idea to always consider the (increase of) feature dimensions when
changing parameters or vectorization methods.

Syntactic Similarity in the ABC Dataset
Similarity is one of the most basic concepts in machine learning and text analytics. In
this section, we take a look at some challenging problems finding similar documents
in the ABC dataset.

After taking a look at possible vectorizations in the previous section, we will now use
one of them to calculate the similarities. We will present a blueprint to show how you
can perform these calculations efficiently from both a CPU and a RAM perspective.
As we are handling large amounts of data here, we have to make extensive use of the
NumPy library.

In the first step, we vectorize the data using stop words and bigrams:

# there are "test" headlines in the corpus
stopwords.add("test")
tfidf = TfidfVectorizer(stop_words=stopwords, ngram_range=(1,2), min_df=2, \
                        norm='l2')
dt = tfidf.fit_transform(headlines["headline_text"])

We are now ready to use these vectors for our blueprints.

Blueprint: Finding Most Similar Headlines to a
Made-up Headline
Let’s say we want to find a headline in our data that most closely matches a
headline that we remember, but only roughly. This is quite easy to solve,

as we just have to vectorize our new document:

made_up = tfidf.transform(["australia and new zealand discuss optimal apple \
                            size"])
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Now we have to calculate the cosine similarity to each headline in the corpus. We
could implement this in a loop, but it’s easier with the cosine_similarity function
of scikit-learn:

sim = cosine_similarity(made_up, dt)

The result is a “number of headlines in the corpus” × 1 matrix, where each number
represents the similarity to a document in the corpus. Using np.argmax gives us the
index of the most similar document:

headlines.iloc[np.argmax(sim)]

Out:

publish_date           2011-08-17 00:00:00
headline_text    new zealand apple imports
Name: 633392, dtype: object

No sizes of apples and no Australia are present in the most similar headline, but it
definitely bears some similarity with our invented headline.

Blueprint: Finding the Two Most Similar Documents in a
Large Corpus (Much More Difficult)
When handling a corpus of many documents, you might often be asked
questions such as “Are there duplicates?” or “Has this been mentioned

before?” They all boil down to finding the most similar (maybe even identical) docu‐
ments in the corpus. We will explain how to accomplish this and again use the ABC
dataset as our example. The number of headlines will turn out to be a challenge.

You might think that finding the most similar documents in the corpus is as easy as
calculating the cosine_similarity between all documents. However, this is not pos‐
sible as 1,103,663 × 1,103,663 = 1,218,072,017,569. More than one trillion elements
do not fit in the RAM of even the most advanced computers. It is perfectly possible to
perform the necessary matrix multiplications without having to wait for ages.

Clearly, this problem needs optimization. As text analytics often has to cope with
many documents, this is a very typical challenge. Often, the first optimization is to
take an intensive look at all the needed numbers. We can easily observe that the docu‐
ment similarity relation is symmetrical and normalized.

In other words, we just need to calculate the subdiagonal elements of the similarity
matrix (Figure 5-1)
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8 We have chosen 10,000 dimensions, as the resulting matrix can be kept in RAM (using roughly 1 GB should
be possible even on moderate hardware).

Figure 5-1. Elements that need to be calculated in the similarity matrix. Only the ele‐
ments below the diagonal need to be calculated, as their numbers are identical to the
ones mirrored on the diagonal. The diagonal elements are all 1.

This reduces the number of elements to 1,103,663 × 1,103,662 / 2 = 609,035,456,953,
which could be calculated in loop iterations, keeping only the most similar docu‐
ments. However, calculating all these elements separately is not a good option, as the
necessary Python loops (where each iteration calculates just a single matrix element)
will eat up a lot of CPU performance.

Instead of calculating individual elements of the similarity matrix, we divide the
problem into different blocks and calculate 10,000 × 10,000 similarity submatrices8  at
once by taking blocks of 10,000 TF-IDF vectors from the document matrix. Each of
these matrices contains 100,000,000 similarities, which will still fit in RAM. Of
course, this leads to calculating too many elements, and we have to perform this for
111 × 110 / 2 = 6,105 submatrices (see Figure 5-2).

From the previous section, we know that iteration takes roughly 500 ms to calculate.
Another advantage of this approach is that leveraging data locality gives us a bigger
chance of having the necessary matrix elements already in the CPU cache. We esti‐
mate that everything should run in about 3,000 seconds, which is roughly one hour.
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9 All calculations can be sped up considerably by using processor-specific libraries, e.g., by subscribing to the
Intel channel in Anaconda. This will use AVX2, AVX-512, and similar instructions and use parallelization.
MKL and OpenBlas are good candidates for linear algebra libraries.

Figure 5-2. Dividing the matrix into submatrices, which we can calculate more easily;
the problem is divided into blocks (here, 4 × 4), and the white and diagonal elements
within the blocks are redundantly calculated.

Can we improve this? Yes, indeed another speedup of a factor of 10 is actually possi‐
ble. This works by normalizing the TF-IDF vectors via the corresponding option of
TfidfVectorizer. Afterward, the similarity can be calculated with np.dot:9

%%time
np.dot(dt[0:10000], np.transpose(dt[0:10000]))

Out:

CPU times: user 16.4 ms, sys: 0 ns, total: 16.4 ms
Wall time: 16 ms
<10000x10000 sparse matrix of type '<class 'numpy.float64'>'
with 1818931 stored elements in Compressed Sparse Row format>

In each iteration we save the most similar documents and their similarity and adjust
them during the iterations. To skip identical documents (or more precisely, docu‐
ments with identical document vectors), we only consider similarities < 0.9999. As it
turns out, using < relations with a sparse matrix is extremely inefficient, as all non-
existent elements are supposed to be 0. Therefore, we must be creative and find
another way:

%%time
batch = 10000
max_sim = 0.0
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max_a = None
max_b = None
for a in range(0, dt.shape[0], batch):
    for b in range(0, a+batch, batch):
        print(a, b)
        r = np.dot(dt[a:a+batch], np.transpose(dt[b:b+batch]))
        # eliminate identical vectors
        # by setting their similarity to np.nan which gets sorted out
        r[r > 0.9999] = np.nan
        sim = r.max()
        if sim > max_sim:
            # argmax returns a single value which we have to
            # map to the two dimensions
            (max_a, max_b) = np.unravel_index(np.argmax(r), r.shape)
            # adjust offsets in corpus (this is a submatrix)
            max_a += a
            max_b += b
            max_sim = sim

Out:

CPU times: user 6min 12s, sys: 2.11 s, total: 6min 14s
Wall time: 6min 12s

That did not take too long, fortunately! max_a and max_b contain the indices of the
headlines with maximum similarity (avoiding identical headlines). Let’s take a look at
the results:

print(headlines.iloc[max_a])
print(headlines.iloc[max_b])

Out:

publish_date                                2014-09-18 00:00:00
headline_text    vline fails to meet punctuality targets report
Name: 904965, dtype: object
publish_date                         2008-02-15 00:00:00
headline_text    vline fails to meet punctuality targets
Name: 364042, dtype: object

Using the block calculation approach, we have calculated almost a trillion similarities
in just a few minutes. The results are interpretable as we have found similar, but not
identical, documents. The different date shows that these are definitely also separate
headlines.
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Blueprint: Finding Related Words
Until now, we have analyzed documents with respect to their similarity.
But the corpus implicitly has much more information, specifically infor‐
mation about related words. In our sense, words are related if they are

used in the same documents. Words should be “more” related if they frequently
appear together in the documents. As an example, consider the word zealand, which
almost always occurs together with new; therefore, these two words are related.

Instead of working with a document-term matrix, we would like to work with a term-
document matrix, which is just its transposed form. Instead of taking row vectors, we
now take column vectors. However, we need to re-vectorize the data. Assume two
words are infrequently used and that both happen to be present only once in the same
headline. Their vectors would then be identical, but this is not what we are looking
for. As an example, let’s think of a person named Zaphod Beeblebrox, who is men‐
tioned in two articles. Our algorithm would assign a 100% related score to these
words. Although this is correct, it is not very significant. We therefore only consider
words that appear at least 1,000 times to get a decent statistical significance:

tfidf_word = TfidfVectorizer(stop_words=stopwords, min_df=1000)
dt_word = tfidf_word.fit_transform(headlines["headline_text"])

The vocabulary is quite small, and we can directly calculate the cosine similarity.
Changing row for column vectors, we just transpose the matrix, using the conve‐
nient .T method of NumPy:

r = cosine_similarity(dt_word.T, dt_word.T)
np.fill_diagonal(r, 0)

Finding the largest entries is easiest if we convert it to a one-dimensional array, get
the index of the sorted elements via np.argsort, and restore the original indices for
the vocabulary lookup:

voc = tfidf_word.get_feature_names()
size = r.shape[0] # quadratic
for index in np.argsort(r.flatten())[::-1][0:40]:
    a = int(index/size)
    b = index%size
    if a > b:  # avoid repetitions
        print('"%s" related to "%s"' % (voc[a], voc[b]))

Out:

"sri" related to "lanka"
"hour" related to "country"
"seekers" related to "asylum"
"springs" related to "alice"
"pleads" related to "guilty"
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"hill" related to "broken"
"trump" related to "donald"
"violence" related to "domestic"
"climate" related to "change"
"driving" related to "drink"
"care" related to "aged"
"gold" related to "coast"
"royal" related to "commission"
"mental" related to "health"
"wind" related to "farm"
"flu" related to "bird"
"murray" related to "darling"
"world" related to "cup"
"hour" related to "2014"
"north" related to "korea"

It’s quite easy to interpret these results. For some word combinations like climate
change, we have restored frequent bigrams. On the other hand, we can also see related
words that don’t appear next to each other in the headlines, such as drink and driving.
By using the transposed document-term matrix, we have performed a kind of co-
occurrence analysis.

Improving Similarity Measures
Does using n-grams, certain word types, or combinations to find most similar docu‐
ments change the results?

Documents that have a high similarity and are also published at roughly the same
time probably describe the same event. Find a way to remove these from the similari‐
ties or—the other way around—focus on these events to detect duplication of news.

Tips for Long-Running Programs like Syntactic Similarity
The following are some efficiency tips for long-running programs:

Perform benchmarking before waiting too long
Before performing calculations on the whole dataset, it is often useful to run a
single calculation and extrapolate how long the whole algorithm will run and
how much memory it will need. You should definitely try to understand how
runtime and memory grow with increased complexity (linear, polynomial, expo‐
nential). Otherwise, you might have to wait for a long time and find out that after
a few hours (or even days) only 10% progress memory is exhausted.
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Try to divide your problem into smaller parts
Dividing a problem into smaller blocks can help here tremendously. As we have
seen in the most similar document of the news corpus, this took only 20 minutes
or so to run and used no significant memory. Compared to a naive approach, we
would have found out after considerable runtime that the RAM would not have
been enough. Furthermore, by dividing the problem into parts, you can make use
of multicore architectures or even distribute the problem on many computers.

Summary and Conclusion
In this section, we have prepared blueprints for vectorization and syntactic similarity.
Almost all machine learning projects with text (such as classification, topic modeling,
and sentiment detection) need document vectors at their very base.

It turns out that feature engineering is one of the most powerful levers for achieving
outstanding performance with these sophisticated machine learning algorithms.
Therefore, it’s an excellent idea to try different vectorizers, play with their parameters,
and watch the resulting feature space. There are really many possibilities, and for
good reason: although optimizing this takes some time, it is usually well-invested as
the results of the subsequent steps in the analysis pipeline will benefit tremendously.

The similarity measure used in this chapter is just an example for document similari‐
ties. For more complicated requirements, there are more sophisticated similarity
algorithms that you will learn about in the following chapters.

Finding similar documents is a well-known problem in information retrieval. There
are more sophisticated scores, such as BM25. If you want a scalable solution, the very
popular Apache Lucene library (which is the basis of search engines like Apache Solr
and Elasticsearch) makes use of this and is used for really big document collections in
production scenarios.

In the following chapters, we will revisit similarity quite often. We will take a look at
integrating word semantics and document semantics, and we will use transfer learn‐
ing to leverage predefined language models that have been trained with extremely
large documents corpora to achieve state-of-the-art performance.
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CHAPTER 6

Text Classification Algorithms

The internet is often referred to as the great enabler: it allows us to accomplish a lot
in our daily lives with the help of online tools and platforms. On the other hand, it
can also be a source of information overload and endless search. Whether it is com‐
municating with colleagues and customers, partners, or vendors, emails and other
messaging tools are an inherent part of our daily work lives. Brands interact with cus‐
tomers and get valuable feedback on their products through social media channels
like Facebook and Twitter. Software developers and product managers communicate
using ticketing applications like Trello to track development tasks, while open source
communities use GitHub issues and Bugzilla to track software bugs that need to be
fixed or new functionality that needs to be added.

While these tools are useful for getting work done, they can also become overwhelm‐
ing and quickly turn into a deluge of information. A lot of emails contain promo‐
tional content, spam, and marketing newsletters that are often a distraction. Similarly,
software developers can easily get buried under a mountain of bug reports and fea‐
ture requests that take away their productivity. In order to make the best use of these
tools, we must also use techniques to categorize, filter, and prioritize the more impor‐
tant information from the less relevant pieces, and text classification is one such tech‐
nique that can help us achieve this.

The most common example of this is spam detection that is provided by email pro‐
viders. In this application of text classification, every incoming email is analyzed to
determine whether it contains meaningful and useful content or irrelevant informa‐
tion that is not useful. This allows the email application to show only the relevant and
important emails and take away the deluge of less useful information. Another appli‐
cation is the classification of incoming customer service requests or software bug
reports. If we are able to classify and assign them to the right person or department,
then they will be resolved faster. There are several applications of text classification,
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and in this chapter we will develop a blueprint that can be applied across several of
them.

What You’ll Learn and What We’ll Build
In this chapter, we will build a blueprint for text classification using a supervised
learning technique. We will use a dataset containing bug reports of a software appli‐
cation and use the blueprint to predict the priority of these bugs and the specific
module that a particular bug belongs to. After studying this chapter, you will under‐
stand how to apply supervised learning techniques, splitting the data into train and
test parts, validating model performance using accuracy measures, and applying
cross-validation techniques. You will also learn about different types of text classifica‐
tion such as binary and multiclass classifications.

Introducing the Java Development Tools Bug Dataset
Software technology products are often complex and consist of several interacting
components. For example, let’s say you are part of a team developing an Android
application that plays podcasts. Apart from the player itself, there can be separate
components such as the library manager, search and discover, and so on. If a user
reports that they are unable to play any podcasts, then it’s important to recognize that
this is a critical bug that needs immediate attention. Another user might report an
issue with their favorite podcast not showing up. This may not be as critical, but it’s
important to determine whether this needs to be looked at by the library manager
team or if it’s actually a problem for the search and discover team. To ensure fast
response times, it’s important to classify issues accurately and assign them to the right
team. Bugs are an inevitable part of any software product, but a quick response will
ensure that customers will be happy and continue to use your product.

In this chapter, we will use blueprints to classify bugs and issues raised during the
development of the Java Development Tools (JDT) open source project. The JDT
project is a part of the Eclipse foundation, which develops the Eclipse integrated
development environment (IDE). JDT provides all the functionality needed by soft‐
ware developers to write code using Java in the Eclipse IDE. Users of JDT report bugs
and track issues with the tool Bugzilla, a popular open source bug tracking software.
Bugzilla is also used by other open source projects like Firefox and the Eclipse Plat‐
form. A dataset containing the bugs for all these projects can be found on GitHub,
and we will use the bugs dataset of the JDT project.

The following section loads a CSV file that contains the JDT bugs dataset. This data‐
set contains 45,296 bugs and some of the available characteristics for each bug. We
print a list of all the features reported for a bug and look at some of them in more
detail to see what the bug reports look like:
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df = pd.read_csv('eclipse_jdt.csv')
print (df.columns)
df[['Issue_id','Priority','Component','Title','Description']].sample(2)

Out:

Index(['Issue_id', 'Priority', 'Component', 'Duplicated_issue', 'Title',
       'Description', 'Status', 'Resolution', 'Version', 'Created_time',
       'Resolved_time'],
      dtype='object')

 Issue_id Priority Component Title Description

38438 239715 P3 UI No property tester for
TestCaseElement for
property projectNature

I20080613-2000; ; Not sure if this belongs to JDT/
Debug or Platform/Debug.; ; I saw this error
message several times today in my error log but Im
not yet sure how to reproduce it.; ; -- Error Deta...

44129 395007 P3 UI [package explorer]
Refresh action not
available on Java
package folders

M3.; ; F5 (Refresh) is available as a context menu
entry for ordinary source folders but not for Java
package folders in the e4 Java Package explorer.; ;
Please restore the 3.x functionality.

Based on the details shown in the previous table, we can see that each bug report con‐
tains the following important features:

Issue_id
The primary key for the issue used to track the bug.

Priority
This varies from P1 (most critical) to P5 (least critical) and defines the severity of
the bug (a categorical field).

Component
This refers to the specific architectural part of the project where the bug occurs.
This could be the UI, the APT, etc. (a categorical field).

Title
This is a short summary entered by the user that briefly describes the bug (a full
text field).

Description
This is a more detailed description of the software behavior that produces the
bug and its impact on usage (a full text field).

While creating the bug reports, users follow the guidelines mentioned on the JDT
Bugzilla website. This describes what information the user needs to provide while
raising a bug so that the developer can find a quick resolution. The website also
includes guidelines that help the user identify what priority should be given for a par‐
ticular bug. Our blueprint will use these bug reports to develop a supervised learning
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algorithm that can be used to automatically assign a priority to any bug that is raised
in the future.

In the previous section, we got a high-level understanding of the dataset and the vari‐
ous features for each bug report. Let’s now explore a single bug report in more detail.
We randomly sample a single bug (you can choose a different value for random_state
to see a different bug) and transpose the results so that the results can be displayed
with more detail. If we do not transpose, the Description feature would be shown in a
truncated manner, whereas now we can see all the contents:

df.sample(1).T

Out:

 11811

Issue_id 33113

Priority P3

Component Debug

Title Evaluating for loop suspends in URLClassLoader

Description Debug to a breakpoint in some HelloWorld program. In the DisplayView; highlight and ; Display the
following code snippet:; ; for (int i = 0; i < 10; i++) {; System.out.println(i);; }; ; Instead of just reporting
No explicit return value; the debugger suspends in the ; URLClassLoader; apparently trying to load the class
int. You have hit Resume several ; more times before the evaluation completes. The DebugView does not
indicate why it ; has stopped (the thread is just labeled Evaluating). This behavior does not happen if ; you
turn off the Suspend on uncaught exceptions preference.

Status VERIFIED

Resolution FIXED

Version 2.1

Created_time 2003-02-25 15:40:00 -0500

Resolved_time 2003-03-05 17:11:17 -0500

We can see from the previous table that this bug was raised in the Debug component
where the program would crash while evaluating a for loop. We can also see that the
user has assigned a medium priority (P3) and that this bug was fixed in a week’s time.
We can see that the reporter of this bug has followed the guidelines and provided a lot
of information that also helps the software developer understand and identify the
problem and provide a fix. Most software users are aware that the more information
they provide, the easier it would be for a developer to understand the issue and pro‐
vide a fix. Therefore, we can assume that most bug reports contain enough informa‐
tion for us to create a supervised learning model.

The output graph describes the distribution of bug reports across different priorities.
We can see that most bugs have been assigned a level of P3. While this might be
because Bugzilla assigns P3 as the default option, it is more likely that this reflects the
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natural tendency of users to pick a medium level for their bug reports. They believe
that the bug does not have a high priority (P1) and at the same time do not want their
bug to not be looked at all by choosing a P5. This is reflected in a lot of real-world
phenomena and is generally referred to as the normal distribution, where a lot of
observations are found at the center or mean with fewer observations at the ends.
This could be also visualized as a bell curve.

df['Priority'].value_counts().sort_index().plot(kind='bar')

Out:

The vast difference between the number of bugs with priority P3 versus other priori‐
ties is a problem for building a supervised learning model and is referred to as class
imbalance. Because the class P3 has an order of magnitude greater number of obser‐
vations than the other classes, the text classification algorithm will have much more
information on P3 bugs than the other priorities: P1, P2, P4, and P5. We will see how
the class imbalance of the Priority feature impacts our solution and also attempt to
overcome it later in the blueprint. This is similar to learning something as a human. If
you have seen more examples of one outcome, you will “predict” more of the same.

In the following snippet, we can see how many bugs are reported against each com‐
ponent of the JDT. The UI and Core components have a much greater number of
bugs than the Doc or APT components. This is expected since some components of a
software system are larger and more important than others. The Doc component,
for example, consists of the documentation section of the software and is used by
software developers to understand the functionality but is probably not a working
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component. The Core component, on the other hand, is an important functional
component of JDT and therefore has many more bugs assigned to it:

df['Component'].value_counts()

Out:

UI       17479
Core     13669
Debug    7542
Text     5901
APT      406
Doc      299
Name: Component, dtype: int64

Blueprint: Building a Text Classification System
We will take a step-by-step approach to building a text classification sys‐
tem and then combine all of these steps to present a unified blueprint.

This text classification system falls under the broader category of supervised learning
models. Supervised learning refers to a domain of machine learning algorithms that
uses labeled data points as training data to learn the relationship between independ‐
ent variables and the target variable. The process of learning the relationship is also
referred to as training a machine learning model. If the target variable is a continuous
numeric variable like distance, sales units, or transaction amounts, we would train a
regression model. However, in our case, the target variable (Priority) is a categorical
variable like the priority or component, and we will choose a classification method to
train a supervised learning model. This model will use independent variables such as
title or description to predict the priority or component of the bug. A supervised
machine learning method aims to learn the mapping function from input to output
variable(s), defined mathematically as follows:

y = f X

In the preceding equation, y is the output or target variable, f  is the mapping func‐
tion, and X is the input variable or set of variables.

Since we are using data that contains the labeled target variable, this is referred to as
supervised learning. Figure 6-1 illustrates the workflow of a supervised learning
model. There are two phases of the workflow: the training phase and the predicting
phase. The training phase starts with the training data that includes the training
observations (which could be text data like bug reports) and the associated labels
(which is what we would want to predict like priority or software component). While
many features of the training observations could be used as is, this alone may not be
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enough to learn the mapping function, and we would like to add domain knowledge
to help the model understand the relationship better. For example, we could add a
feature that shows on which day of the week the bug was reported since bugs are
likely to be fixed sooner if they are reported earlier in the week. This step is referred
to as feature engineering, and the result is a set of feature vectors for each document.
The training step of a supervised learning model accepts as input the feature vectors
and their associated labels and tries to learn the mapping function. At the end of the
training step, we have the mapping function, which is also called the trained model
and can be used to generate predictions.

During the prediction phase, the model receives a new input observation (for exam‐
ple, a bug report) and transforms the documents in the same way as applied during
the training phase to produce the feature vectors. The new feature vectors are fed into
the trained model to generate the prediction (for example, a bug priority). In this
manner we have achieved an automated way of predicting a label.

Figure 6-1. Workflow of a supervised learning algorithm used for classification.

Text classification is an example of a supervised learning algorithm where we use text
data and NLP techniques such as text vectorization to assign a categorical target vari‐
able to a given document. Classification algorithms can be characterized into the fol‐
lowing categories:

Binary classification
This is actually a special case of multiclass classification where an observation can
have any one of two values (binary). For example, a given email can be marked as
spam or not spam. But each observation will have only one label.
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Multiclass classification
In this type of classification algorithm, each observation is associated with one
label. For example, a bug report can have a single value of priority from any of
the five categories P1, P2, P3, P4, or P5. Similarly, when attempting to identify
the software component that a bug is reported in, each bug can be in one of six
categories (UI, Core, Debug, Text, APT, or Doc).

Multilabel classification
In this type of classification algorithm each observation can be assigned to multi‐
ple labels. For example, a single news article could be tagged with multiple labels,
such as Security, Tech, and Blockchain. Several strategies can be used to solve a
multilabel classification problem, including the use of multiple binary classifica‐
tion models to generate the final result, but we will not cover this in our blue‐
print.

Step 1: Data Preparation
Before proceeding to build the text classification model, we must perform some nec‐
essary preprocessing steps to clean the data and format it in a manner that is suitable
for the application of machine learning algorithms. Since our objective is to identify
the priority of a bug report given its title and description, we select only those col‐
umns that are relevant for the text classification model. We also remove any rows that
contain empty values using the dropna function. Finally, we combine the title and
description columns to create a single text value and apply the text cleaning blueprint
from Chapter 4 to remove special characters. After removing the special characters,
we filter out those observations that have fewer than 50 characters in the text field.
These bug reports have not been filled out correctly and contain very little descrip‐
tion of the problem and are not helpful in training the model:

df = df[['Title','Description','Priority']]
df = df.dropna()
df['text'] = df['Title'] + ' ' + df['Description']
df = df.drop(columns=['Title','Description'])
df.columns

Out:

 Index(['Priority', 'text'], dtype='object')

Then:
 df['text'] = df['text'].apply(clean)
 df = df[df['text'].str.len() > 50]
 df.sample(2)
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Out:

 Priority text

28311 P3 Need to re-run APT on anti-dependencies when files are generated If a generated file satisfies a missing
type in another file we should rerun APT on the file which would be fixed by the new type. Currently java
compilation does the correct thing but APT does not. Need to keep track of files with missing types and
recompile at the end of the round if new types are generated. For good perf need to track the names and
only compile those missing types that were generated

25026 P2 Externalize String wizard: usability improvements M6 Test pass Since most of the Java developers will not
be faces with the Eclipses mode I would move the check box down to the area of the Accessor class.
Furthermore the wizard shouldnt provide the option if org.eclipse.osgi.util.NLS isnt present in the
workspace. This will avoid that normal Java developers are faces with the option at all

We can see from the preceding summary of the text feature for two bug reports that
our cleaning steps have removed a lot of special characters; we still have retained a lot
of the code structure and statements that form part of the description. This is useful
information that the model can use to understand the bug and will have an impact on
whether it belongs to a higher priority.

Step 2: Train-Test Split
During the process of training a supervised learning model, we are attempting to
learn a function that most closely resembles the real-world behavior. We use the
information available in the training data to learn this function. Afterward, it is
important to evaluate how close our learned function is to the real world, and we split
our entire data into train and test splits to achieve this. We split the data, typically
using a percentage, with the larger share assigned to the train split. For example, if we
have a dataset with 100 observations and apply a train-test split in the ratio of 80-20,
then 80 observations will become part of the train split and 20 observations will
become part of the test split. The model is now trained on the train split, which uses
only the 80 observations to learn the function. We will use the test split of 20 observa‐
tions to evaluate the learned function. An illustration of this is shown in Figure 6-2.

During training phase:

ytrain = F Xtrain

During evaluation:

yprediction = F Xtest

Blueprint: Building a Text Classification System | 159



Figure 6-2. A train-test split in the ratio 80-20.

The model has seen only the 80 observations in the train split, and the learned func‐
tion is now applied on a completely independent and unseen test split to generate the
predictions. We know the real values of the target variable in the test split, and com‐
paring these with the predictions will give us a true measure of how well the learned
function performs and how close it is to real-world behavior:

accuracy = error_metric yprediction, ytrue

Evaluating the learned model on the test split provides an unbiased estimate of the
error of the text classification model since the observations in the test split have been
randomly sampled from the training observations and are not part of the learning
process. The test split will be used during model evaluation, and there are several
metrics that can be used to measure this error, which will be discussed in “Step 4:
Model Evaluation” on page 163.

We use the sklearn.model_selection.train_test_split function to implement
the train-test split, and we provide 0.2 as the argument for the test_size (denoting
20% of our data as our test split). In addition, we must also specify our independent
and target variables, and the method returns to us a list of four elements; the first two
elements are the independent variables split into train and test splits, and the next
two elements are the target variable splits. One important argument of the function to
note is the random_state. This number influences how the rows are sampled and
therefore which set of observations goes to the train split and which set of observa‐
tions goes to the test split. If you provide a different number, the 80-20 split will
remain the same, but a different selection of observations will go to the train and test
splits. It’s important to remember that to reproduce the same results you must choose
the same value of the random_state. For example, if you want to check what happens
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to the model on adding a new independent variable, you must be able to compare the
accuracy before and after adding the new variable. Therefore, you must use the same
random_state so that you can determine whether a change occurred. The last param‐
eter to take note of is stratify, which ensures that the distribution of the target vari‐
able is maintained in the train and test splits. If this is not maintained, then the
training split can have a much higher number of observations of a certain class,
which does not reflect the distribution in the training data and leads to the model
learning an unrealistic function:

X_train, X_test, Y_train, Y_test = train_test_split(df['text'],
                                                    df['Priority'],
                                                    test_size=0.2,
                                                    random_state=42,
                                                    stratify=df['Priority'])

print('Size of Training Data ', X_train.shape[0])
print('Size of Test Data ', X_test.shape[0])

Out:

Size of Training Data  36024
Size of Test Data  9006

Step 3: Training the Machine Learning Model
Our next step in creating the text classification blueprint is to train a supervised
machine learning model using a suitable algorithm. SVM is one of the popular algo‐
rithms used when working with text classification, and we will first provide an intro‐
duction to the method and then illustrate why it’s well-suited to our task.

Consider a set of points in the X-Y plane with each point belonging to one of two
classes: cross or circle, as represented in Figure 6-3. The SVM works by choosing a
line that clearly separates the two classes. Of course, there could be several such lines
(shown by the dotted options), and the algorithm chooses the line that provides the
maximum separation between the closest cross and circle points (identified with a
box around them). These closest cross and circle points are referred to as support vec‐
tors. In the illustration, we are able to identify a hyperplane that clearly separates the
cross and circle points, but in reality, it might be difficult to achieve this. For example,
there may be a few circle points that lie on the extreme left, and it would be impossi‐
ble to then generate a hyperplane. The algorithm manages this with the tolerance
parameter tol that allows for some flexibility and accepts an error in the form of mis‐
classified points when deciding a hyperplane.
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Figure 6-3. Hyperplane and support vectors in a simple two-dimensional classification
example.

Before proceeding to run the SVM model, we must prepare our text data in a suitable
format that can be used by the algorithm. This means that we must find a way to rep‐
resent text data in a numeric format. The simplest way is to count the number of
times each word occurs in a bug report and combine the counts of all words to create
a numeric representation for each observation. This technique has the disadvantage
that commonly occurring words will have large values and could be understood as
important features when this is not true. Therefore, we use the preferred option of
representing the text using a Term-Frequency Inverse Document Frequency (TF-
IDF) vectorization, which is explained in more detail in Chapter 5:

tfidf = TfidfVectorizer(min_df = 10, ngram_range=(1,2), stop_words="english")
X_train_tf = tfidf.fit_transform(X_train)

The TF-IDF vectorization performed in the previous step results in a sparse matrix.
The SVM algorithm is preferred when working with text data because it is more
suited to work with sparse data compared to other algorithms like Random Forest.
They are also better suited to work with input features that are purely numeric (as in
our case), while other algorithms are capable of handling a mixture of numeric and
categorical input features. For our text classification model we will use the
sklearn.svm.LinearSVC module that is provided by the scikit-learn library. SVMs
can actually be initialized with different kernel functions, and the linear kernel is rec‐
ommended for use with text data as there are a large number of features that can be
considered linearly separable. It is also faster to fit since it has fewer parameters to
optimize. The scikit-learn package provides different implementations of a linear
SVM, and if you are interested, you can learn the differences between them as
described in “SVC Versus LinearSVC Versus SGDClassifier” on page 163.
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In the following code, we initialize the model with a certain random_state and spec‐
ify a tolerance value of 0.00001. The arguments are specific to the type of model we
use, and we will show later in this chapter how we can arrive at the optimal parameter
values for these arguments. For now we start by specifying some default values and
then call the fit method, making sure to use the vectorized independent variables
that we created in the previous step:

model1 = LinearSVC(random_state=0, tol=1e-5)
model1.fit(X_train_tf, Y_train)

Out:

LinearSVC(C=1.0, class_weight=None, dual=True, fit_intercept=True,
          intercept_scaling=1, loss='squared_hinge', max_iter=1000,
          multi_class='ovr', penalty='l2', random_state=0, tol=1e-05,
          verbose=0)

On executing the preceding code, we fit a model using the training data, and the
result shows us the various parameters of the model that was generated. Most of these
are the default values since we specified only the random_state and tolerance.

SVC Versus LinearSVC Versus SGDClassifier
sklearn.svm.SVC is the generic implementation of the support vector machine algo‐
rithm provided by scikit-learn. This can be used to build models with different kernel
functions, including linear, polynomial, and radial basis functions. The
sklearn.svm.LinearSVC is a specific implementation of a linear SVM. Ideally, it
should produce the same results as an SVC with linear kernel. However, the key dif‐
ference is that LinearSVC uses the liblinear implementation, while SVC is based on
the libsvm implementation. Both of them are popular open source libraries in C++
that implement the SVM algorithm but use different approaches. LinearSVC is much
faster, whereas SVC is more generic and supports multiple kernels. sklearn.lin
ear_model.SGDClassifier is actually an optimization algorithm called stochastic gra‐
dient descent (SGD), and is used to optimize a given objective function. When we
specify the loss of an SGDClassifier to “hinge,” this equates to a linear SVM and
should arrive at the same result. Again, the approach is different, and therefore the
results may not be the same. To summarize, all three methods can be used to imple‐
ment an SVM with a linear kernel, but LinearSVC is normally the fastest, whereas the
other two methods are more generic.

Step 4: Model Evaluation
We now have a model that can be used to predict the target variable for all the obser‐
vations in the test split. For these observations, we also know the real target variable,
and therefore we can calculate the performance of our model. There are many
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metrics that can be used to quantify the accuracy of our model, and we will introduce
three of them in this section.

The simplest way to validate our text classification model is accuracy: the ratio of the
number of predictions that the model got right to the total number of observations.
This can be expressed mathematically as follows:

Accuracy = Number o f correct predictions
Total number o f predictions made

To measure the accuracy of the model, we use the trained model to generate predic‐
tions and compare with the real values. To generate the predictions, we must apply
the same vectorization to the test split of the independent variable and then call the
predict method of the trained model. Once we have the predictions, we can use the
accuracy_score method shown next that automatically generates this metric by
comparing the true values and the model predictions of the test split:

X_test_tf = tfidf.transform(X_test)

Y_pred = model1.predict(X_test_tf)
print ('Accuracy Score - ', accuracy_score(Y_test, Y_pred))

Out:

Accuracy Score -  0.8748612036420165

As you can see, we have achieved a high accuracy score of 87.5%, which indicates that
we have a good model that is able to predict the priority of bugs accurately. Please
note that if you initialized the model with a different random_state, you might not
get the same score, but it would be similar. It is always a good idea to compare the
performance of a trained model with a simple baseline approach that could be based
on simple rules of thumb or business knowledge. The objective is to check whether
the trained model performs better than the baseline and therefore adds value. We can 
use the sklearn.svm.DummyClassifier module, which provides simple strategies like
most_frequent, where the baseline model always predicts the class with highest fre‐
quency, or which is stratified, which generates predictions that respect the training
data distribution:

clf = DummyClassifier(strategy='most_frequent')
clf.fit(X_train, Y_train)
Y_pred_baseline = clf.predict(X_test)
print ('Accuracy Score - ', accuracy_score(Y_test, Y_pred_baseline))

Out:

Accuracy Score -  0.8769709082833667

We can clearly see that our trained model is not adding any value since it performs
just as well as a baseline that always chooses the class P3. Another aspect that we must
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dig deeper to investigate is how well the model is performing for the different priority
levels. Is it better at predicting priority P1 or P5? To analyze this, we can use another
evaluation tool known as the confusion matrix. The confusion matrix is a grid that
compares the predicted values with the actual values for all the classified observa‐
tions. The most common representation of a confusion matrix is for a binary classifi‐
cation problem with only two labels.

We can modify our multiclass classification problem to suit this representation by
considering one class as P3 and the other class as all of the rest. Let’s look at
Figure 6-4, a sample representation of the confusion matrix that predicts only
whether a particular bug has a priority P3 or not.

Figure 6-4. Confusion matrix for priority P3 and not P3.

The rows depict the predictions, and the columns depict the actual values. Each slot
in the matrix is the count of observations falling in that slot:

True Positive
The count of those observations that were predicted to be positive and are indeed
positive.

True Negative
The count of those observations that were predicted to be negative and are
indeed negative.

False Positive
The count of those observations that were predicted to be positive but are
actually negative.

False Negative
The count of those observations that were predicted to be negative but are
actually positive.
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Based on this list, we can automatically derive the accuracy measure using the follow‐
ing equation:

Accuracy = True Positive + True Negative
True Positive + True Negative + False Positive + False Negative

This is nothing but a ratio of all the predictions that were correct and the total num‐
ber of predictions.

Precision and recall
The real value of using the confusion matrix is in other measures like Precision and
Recall, which give us more insight into how the model performs for different classes.

Let’s take the positive (P3) class and consider the Precision:

Precision = True Positive
True Positive + False Positive

This metric tells us what proportion of predicted positives is actually positive, or how
accurate our model is at predicting the positive class. If we want to be sure of our pos‐
itive predictions, then this is a metric we must maximize. For example, if we are clas‐
sifying emails as spam (positive), then we must be accurate at this; otherwise, a good
email might accidentally be sent to the spam folder.

Another metric that is derived from the confusion matrix is Recall:

Recall = True Positive
True Positive + False Negative

This metric tells us what proportion of real positive values is actually identified by
our model. A high recall means that our model is able to capture most of the positive
classifications in reality. This is especially important when the cost of not identifying
a positive case is very high, for example, if a patient has cancer but our model does
not identify it.

From the previous discussion, we can conclude that both precision and recall are
important metrics depending on the application of the model. The F1 score is a metric
that creates a harmonic mean of both of these measures and can also be used as a
proxy to evaluate the overall accuracy of the model:

F1 Score = 2 * Precision * Recall
Precision + Recall
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Now that we have developed an understanding of the confusion matrix, let’s come
back to our blueprint and add the step to evaluate the confusion matrix of the trained
model. Note that the earlier representation was simplified as a binary classification,
whereas our model is actually a multiclass classification problem, and therefore the
confusion matrix will change accordingly. For example, the confusion matrix for our
model can be generated with the function confusion_matrix, as shown here:

Y_pred = model1.predict(X_test_tf)
confusion_matrix(Y_test, Y_pred)

Out:

array([[  17,    6,  195,    5,    0],
       [   7,   14,  579,    7,    0],
       [  21,   43, 7821,   13,    0],
       [   0,    7,  194,   27,    0],
       [   0,    0,   50,    0,    0]])

This can also be visualized in the form of a heatmap by using the plot_confu
sion_matrix function as shown here:

plot_confusion_matrix(model1,X_test_tf,
                      Y_test, values_format='d',
                      cmap=plt.cm.Blues)
plt.show()

We can define the precision and recall for each category using the same methodology
as described earlier but will now include the count of observations that were incor‐
rectly classified into other categories as well.
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For example, the precision of the category P3 can be calculated as the ratio of cor‐
rectly predicted P3 values (7,821) and all predicted P3 values (195 + 579 + 7,821 +
194 + 50), resulting in the following:

Precision (P3) = 7,821 / 8,839 = 0.88

Similarly, the recall for P3 can be calculated as the ratio of correctly predicted P3 val‐
ues and all actual P3 values (21 + 43 + 7,821 + 13 + 0), resulting in the following:

Recall (P2) = 7,821 / 7,898 = 0.99

An easier way to determine these measures directly is to use the classifica
tion_report function from scikit-learn that automatically calculates these values
for us:

print(classification_report(Y_test, Y_pred))

Out:

              precision    recall  f1-score   support

          P1       0.38      0.08      0.13       223
          P2       0.20      0.02      0.04       607
          P3       0.88      0.99      0.93      7898
          P4       0.52      0.12      0.19       228
          P5       0.00      0.00      0.00        50

    accuracy                           0.87      9006
   macro avg       0.40      0.24      0.26      9006
weighted avg       0.81      0.87      0.83      9006

Based on our calculations and the previous classification report, one issue becomes
glaringly obvious: while the recall and precision values for the class P3 are quite high,
these values for the other classes are low and even 0 in some cases (P5). The overall
accuracy of the model is 88%, but if we hard-coded our prediction to always be P3,
this would also be correct 88% of the time. This makes it clear that our model has not
learned much of significance and is merely predicting the majority class. This high‐
lights the fact that during model evaluation we must analyze several metrics and not
rely on the accuracy alone.

Class imbalance
The reason for the model to behave in this manner is due to the class imbalance in the
priority classes that we observed earlier. While there were close to 36,000 bugs with a
priority of P3, the number of bugs with other priority classes was only about 4,000
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1 Nitesh Chawla et al. “Synthetic Minority Over-Sampling Technique.” Journal of Artificial Intelligence Research
16 (June 2002). https://arxiv.org/pdf/1106.1813.pdf.

and even fewer in other cases. This means that when we trained our model, it was
able to learn the characteristics of the P3 class alone.

There are several techniques we can use to overcome the issue of class imbalance.
They belong to two categories of upsampling and downsampling techniques. Upsam‐
pling techniques refer to methods used to artificially increase the number of observa‐
tions of the minority class (non-P3 classes in our example). These techniques can
vary from simply adding multiple copies to generating new observations using a
method like SMOTE.1 Downsampling techniques refer to methods that are used to
reduce the number of observations of the majority class (P3 in our example). We will
choose to randomly downsample the P3 class to have a similar number of observa‐
tions as the other classes:

# Filter bug reports with priority P3 and sample 4000 rows from it
df_sampleP3 = df[df['Priority'] == 'P3'].sample(n=4000)

# Create a separate DataFrame containing all other bug reports
df_sampleRest = df[df['Priority'] != 'P3']

# Concatenate the two DataFrame to create the new balanced bug reports dataset
df_balanced = pd.concat([df_sampleRest, df_sampleP3])

# Check the status of the class imbalance
df_balanced['Priority'].value_counts()

Out:

P3    4000
P2    3036
P4    1138
P1    1117
P5    252
Name: Priority, dtype: int64

Please note that in performing the downsampling, we are losing information, and this
is not generally a good idea. However, whenever we come across a class imbalance
problem, this prevents our model from learning the right information. We try to
overcome this by using upsampling and downsampling techniques, but this will
always involve a compromise with regard to data quality. While we have chosen a
simplistic approach, please see the following sidebar to understand various ways to
deal with the situation.
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Dealing with Class Imbalance
One of the straightforward ways of dealing with class imbalance is by randomly
upsampling or downsampling. However, there are several more creative ways to deal
with this situation, the first of which is the synthetic-minority oversampling technique
(SMOTE). Using this method we don’t just create copies of the same observation but
instead synthetically generate new observations that are similar to the minority class.
From the paper, we have the following simple description:

Take the difference between the feature vector (sample) under consideration and its
nearest neighbor. Multiply this difference by a random number between 0 and 1, and
add it to the feature vector under consideration. This causes the selection of a ran‐
dom point along the line segment between two specific features.

This creates new samples that lie close to existing minority samples but are not
exactly the same. The most useful Python package for dealing with class imbalance is
imbalanced-learn, which is also compatible with scikit-learn. In addition to the meth‐
ods discussed, it also provides additional sampling techniques such as NearMiss (for
undersampling using nearest neighbors).

Final Blueprint for Text Classification
We will now combine all the steps we have listed so far to create our blue‐
print for text classification:

# Loading the balanced DataFrame

df = df_balanced[['text', 'Priority']]
df = df.dropna()

# Step 1 - Data Preparation

df['text'] = df['text'].apply(clean)

# Step 2 - Train-Test Split
X_train, X_test, Y_train, Y_test = train_test_split(df['text'],
                                                    df['Priority'],
                                                    test_size=0.2,
                                                    random_state=42,
                                                    stratify=df['Priority'])
print('Size of Training Data ', X_train.shape[0])
print('Size of Test Data ', X_test.shape[0])

# Step 3 - Training the Machine Learning model
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tfidf = TfidfVectorizer(min_df=10, ngram_range=(1, 2), stop_words="english")
X_train_tf = tfidf.fit_transform(X_train)

model1 = LinearSVC(random_state=0, tol=1e-5)
model1.fit(X_train_tf, Y_train)

# Step 4 - Model Evaluation

X_test_tf = tfidf.transform(X_test)
Y_pred = model1.predict(X_test_tf)
print('Accuracy Score - ', accuracy_score(Y_test, Y_pred))
print(classification_report(Y_test, Y_pred))

Out:

Size of Training Data  7634
Size of Test Data  1909
Accuracy Score -  0.4903090623363017
              precision    recall  f1-score   support

          P1       0.45      0.29      0.35       224
          P2       0.42      0.47      0.44       607
          P3       0.56      0.65      0.61       800
          P4       0.39      0.29      0.33       228
          P5       0.00      0.00      0.00        50

    accuracy                           0.49      1909
   macro avg       0.37      0.34      0.35      1909
weighted avg       0.47      0.49      0.48      1909

Based on the results, we can see that our accuracy is now at 49%, which is not good.
Analyzing further, we can see that precision and recall values have improved for pri‐
ority P1 and P2, indicating that we are able to better predict bugs with this priority.
However, it’s also obvious that for bugs with priority P5, this model does not offer
anything. We see that this model does perform better than a simple baseline using a
stratified strategy, as shown next. Even though the earlier model had a higher accu‐
racy, it wasn’t actually a good model because it was ineffective. This model is also not
good but at least presents a true picture and informs us that we must not use it for
generating predictions:

clf = DummyClassifier(strategy='stratified')
clf.fit(X_train, Y_train)
Y_pred_baseline = clf.predict(X_test)
print ('Accuracy Score - ', accuracy_score(Y_test, Y_pred_baseline))

Out:

Accuracy Score -  0.30434782608695654
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The following are some examples of where our model predictions for these priorities
are accurate:

# Create a DataFrame combining the Title and Description,
# Actual and Predicted values that we can explore
frame = { 'text': X_test, 'actual': Y_test, 'predicted': Y_pred }
result = pd.DataFrame(frame)

result[((result['actual'] == 'P1') | (result['actual'] == 'P2')) &
       (result['actual'] == result['predicted'])].sample(2)

Out:

 text actual predicted

64 Java launcher: Dont prompt for element to launch if theres only one I went to debug a CU by
selecting it and clicking the debug tool item. I was prompted to select a launcher and I also had
to select the only available class on the second page. The second step shouldnt be necessary.
The next button on the first page should be disabled. NOTES: DW The first time you launch
something in your workspace you must go through this pain...This is due to the debugger being
pluggable for different lauguages. In this case the launcher selection is generic debug support
and the choosing of a class to launch is java specific debug support. To promote lazy plugin
loading and to avoid launchers doing exhaustive searching for launchable targets the launcher
selection page does not poll the pluggable launch page to see if it can finish with the current
selection. Once you have selected a defualt launcher for a project the launcher selection page
will not bother you again. Moved to inactive for post-June consideratio

P2 P2

5298 Rapid stepping toString When you do rapid stepping and have an object selected displaying
details we get exceptions in the log. This is because the toString attempts an evaluation while a
step is in progress. We have to allow stepping during evaluations so this is a tricky timing issue.
</log-entr

P1 P1

Here are some cases where the model prediction is inaccurate:

result[((result['actual'] == 'P1') | (result['actual'] == 'P2')) &
       (result['actual'] != result['predicted'])].sample(2)

Out:

 text actual predicted

4707 Javadoc wizard: Problems with default package 20020328 1. empty project. create A.java in
default package 2. Start export wizard select the default package press Finish 3. Creation fails
javadoc: No source files for package A Loading source files for package A... 1 error Dont know if
this is a general javadoc probl

P1 P2

16976 Breakpoint condition compiler should not matter about NON-NLS strings Ive a project in which
Ive set compiler option usage of non-externalized strings to Warning. When I want to set a
condition on a breakpoint which contains a string object.equals for example I break all the
time at this point due to a compilation error... Then Im obliged to write my condition as:
boolean cond = object.equals //$NON-NLS-1$ return cond to avoid this problem. Wont it be
possible that debugger uses a specific compiler which would ignore current project/workspace
compiler options but only uses default one

P2 P3
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Our model is not accurate, and from observing the predictions, it is not clear whether
a relationship between description and priority exists. To improve the accuracy of our
model, we have to perform additional data cleaning steps and perform steps such as
lemmatization, removing noisy tokens, modifying min_df and max_df, including tri‐
grams, and so on. We recommend that you modify the current clean function pro‐
vided in “Feature Extraction on a Large Dataset” on page 115 and check the
performance. Another option is also to determine the right hyperparameters for the
selected model, and in the next section, we will introduce the cross-validation and
grid search techniques, which can help us better understand model performance and
arrive at an optimized model.

Blueprint: Using Cross-Validation to Estimate
Realistic Accuracy Metrics
Before training the model, we created a train-test split so that we can

accurately evaluate our model. Based on the test split, we got an accuracy of 48.7%.
However, it is desirable to improve this accuracy. Some of the techniques that we
could use include adding additional features such as trigrams, adding additional text
cleaning steps, choosing different model parameters, and then checking performance
on the test split. Our result is always based on a single hold-out dataset that we cre‐
ated using the train-test split. If we go back and change the random_state or shuffle
our data, then we might get a different test split, which might have different accuracy
for the same model. Therefore, we rely heavily on a given test split to determine the
accuracy of our model.

Cross-validation is a technique that allows us to train on different splits of data and
validate also on different splits of data in a repetitive manner so that the final model
that is trained achieves the right balance between underfitting and overfitting. Under‐
fitting is the phenomenon where our trained model does not learn the underlying
relationship well and makes similar predictions for every observation that are far
away from the real value. This is because the chosen model is not complex enough to
model the phenomenon (wrong choice of model) or there are insufficient observa‐
tions from which to learn the relationship. Overfitting is the phenomenon where the
chosen model is complex and has fit the underlying pattern very well during training
but produces significant deviations on the test data. This indicates that the trained
model does not generalize well to unseen data. By using a cross-validation technique,
we become aware of these drawbacks by training and testing on multiple splits of the
data and can arrive at a more realistic performance of our model.
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There are many variants of cross-validation, and the most widely used is K-fold
cross-validation. Figure 6-5 demonstrates a K-fold strategy, where we first divide the
entire training dataset into K folds. In each iteration, a model is trained on a different
set of K-1 folds of the data, and validation is performed on the held-out Kth fold. The
overall performance is taken to be the average of the performance on all hold-out K
folds. In this way we are not basing our model accuracy on just one test split but mul‐
tiple such splits, and similarly we are also training the model on multiple splits of the
training data. This allows us to use all the observations for training our model as we
do not need to have a separate hold-out test split.

Figure 6-5. A K-fold cross-validation strategy where a different hold-out set (shaded) is
chosen each time the model is trained. The rest of the sets form part of the training data.

To perform cross-validation, we will use the cross_val_score method from scikit-
learn. This takes as arguments the model that needs to be fit, the training dataset, and
the number of folds that we want to use. In this case, we use a five-fold cross-
validation strategy, and, depending on the number of training observations and avail‐
ability of computing infrastructure, this can vary between 5 and 10. The method
returns the validation score for each iteration of the cross-validation, and we can cal‐
culate the mean value obtained across all validation folds. From the results, we can
see that the validation score varies from 36% up to 47%. This indicates that the model
accuracy we reported earlier on the test dataset was optimistic and an artifact of the
specific way in which the train-test split occurred. A more realistic accuracy that we
can expect from this model is actually the average score of 44% derived from cross-
validation. It’s important to perform this exercise to understand the true potential of
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any model. We perform the vectorization step again because we are going to use the
entire dataset and not just the train split:

# Vectorization

tfidf = TfidfVectorizer(min_df = 10, ngram_range=(1,2), stop_words="english")
df_tf = tfidf.fit_transform(df['text']).toarray()

# Cross Validation with 5 folds

scores = cross_val_score(estimator=model1,
                         X=df_tf,
                         y=df['Priority'],
                         cv=5)

print ("Validation scores from each iteration of the cross validation ", scores)
print ("Mean value across of validation scores ", scores.mean())
print ("Standard deviation of validation scores ", scores.std())

Out:

Validation scores from each iteration of the cross validation
[0.47773704 0.47302252 0.45468832 0.44054479 0.3677318 ]
Mean value across of validation scores  0.44274489261393396
Standard deviation of validation scores  0.03978852971586144

Using a cross-validation technique allows us to use all observations,
and we do not need to create a separate hold-out test split. This
gives the model more data to learn from.

Blueprint: Performing Hyperparameter Tuning
with Grid Search
Grid search is a useful technique to improve the accuracy of the model by

evaluating different parameters that are used as arguments for the model. It does so
by trying different combinations of hyperparameters that can maximize a given met‐
ric (e.g., accuracy) for the machine learning model. For example, if we use the
sklearn.svm.SVC model, it has a parameter named kernel that can take several val‐
ues: linear, rbf (radial basis function), poly (polynomial), and so on. Furthermore,
by setting up a preprocessing pipeline, we could also test with different values of
ngram_range for the TF-IDF vectorization. When we do a grid search, we provide the
set of parameter values that we would like to evaluate, and combined with the cross-
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validation method of training a model, this identifies the set of hyperparameters that
maximizes model accuracy. The biggest drawback of this technique is that it is CPU-
and time-intensive; in a way we, are testing many possible combinations of hyper‐
parameters to arrive at the set of values that perform best.

To test the right choice of hyperparameters for our model, we first create a train
ing_pipeline where we define the steps that we would like to run. In this case, we 
specify the TF-IDF vectorization and the LinearSVC model training. We then define a
set of parameters that we would like to test using the variable grid_param. Since a
parameter value is specific to a certain step in the pipeline, we use the name of the
step as the prefix when specifying the grid_param. For example, min_df is a parame‐
ter used by the vectorization step and is therefore referred to as tfidf__min_df.
Finally, we use the GridSearchCV method, which provides the functionality to test
multiple versions of the entire pipeline with different sets of hyperparameters and
produces the cross-validation scores from which we pick the best-performing
version:

training_pipeline = Pipeline(
    steps=[('tfidf', TfidfVectorizer(stop_words="english")),
            ('model', LinearSVC(random_state=42, tol=1e-5))])

grid_param = [{
    'tfidf__min_df': [5, 10],
    'tfidf__ngram_range': [(1, 3), (1, 6)],
    'model__penalty': ['l2'],
    'model__loss': ['hinge'],
    'model__max_iter': [10000]
}, {
    'tfidf__min_df': [5, 10],
    'tfidf__ngram_range': [(1, 3), (1, 6)],
    'model__C': [1, 10],
    'model__tol': [1e-2, 1e-3]
}]

gridSearchProcessor = GridSearchCV(estimator=training_pipeline,
                                   param_grid=grid_param,
                                   cv=5)
gridSearchProcessor.fit(df['text'], df['Priority'])

best_params = gridSearchProcessor.best_params_
print("Best alpha parameter identified by grid search ", best_params)

best_result = gridSearchProcessor.best_score_
print("Best result identified by grid search ", best_result)

Out:

Best alpha parameter identified by grid search  {'model__loss': 'hinge',
'model__max_iter': 10000, 'model__penalty': 'l2', 'tfidf__min_df': 10,
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'tfidf__ngram_range': (1, 6)}
Best result identified by grid search  0.46390780513357777

We have evaluated two values of min_df and ngram_range with two different sets of
model parameters. In the first set, we tried with the l2 model_penalty and hinge
model_loss with a maximum of 1,000 iterations. In the second set, we tried to vary
the value of the regularization parameter C and tolerance values of the model. While
we saw the parameters of the best model earlier, we can also check the performance of
all other models that were generated to see how the parameter values interact. You
can see the top five models and their parameter values as in the following:

gridsearch_results = pd.DataFrame(gridSearchProcessor.cv_results_)
gridsearch_results[['rank_test_score', 'mean_test_score',
                    'params']].sort_values(by=['rank_test_score'])[:5]

 rank_test_score mean_test_score params

3 1 0.46 {'model__loss’: ‘hinge', ‘model__max_iter’: 10000, ‘model__penalty’: ‘l2',
‘tfidf__min_df’: 10, ‘tfidf__ngram_range’: (1, 6)}

2 2 0.46 {'model__loss’: ‘hinge', ‘model__max_iter’: 10000, ‘model__penalty’: ‘l2',
‘tfidf__min_df’: 10, ‘tfidf__ngram_range’: (1, 3)}

0 3 0.46 {'model__loss’: ‘hinge', ‘model__max_iter’: 10000, ‘model__penalty’: ‘l2',
‘tfidf__min_df’: 5, ‘tfidf__ngram_range’: (1, 3)}

1 4 0.46 {'model__loss’: ‘hinge', ‘model__max_iter’: 10000, ‘model__penalty’: ‘l2',
‘tfidf__min_df’: 5, ‘tfidf__ngram_range’: (1, 6)}

5 5 0.45 {'model__C’: 1, ‘model__tol’: 0.01, ‘tfidf__min_df’: 5, ‘tfidf__ngram_range’:
(1, 6)}

Blueprint Recap and Conclusion
Let’s recap the steps of the blueprint for text classification by applying this to a differ‐
ent classification task. If you recall, we mentioned at the beginning of the chapter that
to enable quick bug fixes, we must identify the priority of the bug and also assign it to
the right team. The assignment can be done automatically by identifying which part
of the software the bug belongs to. We have seen that the bug reports have a feature
named Component with values including Core, UI, and Doc. This can be helpful in
assigning the bug to the right team or individual, leading to a faster resolution. This
task is similar to identifying the bug priority and will help us understand how the
blueprint can be applied to any other application.
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We update the blueprint with the following changes:

• Additional step to include grid search to identify the best hyperparameters and
limit the number of options tested to increase runtime

• Additional option to use the sklearn.svm.SVC function to compare performance
and try nonlinear kernels

# Flag that determines the choice of SVC and LinearSVC
runSVC = True

# Loading the DataFrame

df = pd.read_csv('eclipse_jdt.csv')
df = df[['Title', 'Description', 'Component']]
df = df.dropna()
df['text'] = df['Title'] + df['Description']
df = df.drop(columns=['Title', 'Description'])

# Step 1 - Data Preparation
df['text'] = df['text'].apply(clean)
df = df[df['text'].str.len() > 50]

if (runSVC):
    # Sample the data when running SVC to ensure reasonable run-times
    df = df.groupby('Component', as_index=False).apply(pd.DataFrame.sample,
                                                       random_state=21,
                                                       frac=.2)

# Step 2 - Train-Test Split
X_train, X_test, Y_train, Y_test = train_test_split(df['text'],
                                                    df['Component'],
                                                    test_size=0.2,
                                                    random_state=42,
                                                    stratify=df['Component'])
print('Size of Training Data ', X_train.shape[0])
print('Size of Test Data ', X_test.shape[0])

# Step 3 - Training the Machine Learning model
tfidf = TfidfVectorizer(stop_words="english")

if (runSVC):
    model = SVC(random_state=42, probability=True)
    grid_param = [{
        'tfidf__min_df': [5, 10],
        'tfidf__ngram_range': [(1, 3), (1, 6)],
        'model__C': [1, 100],
        'model__kernel': ['linear']
    }]
else:
    model = LinearSVC(random_state=42, tol=1e-5)
    grid_param = {

178 | Chapter 6: Text Classification Algorithms



        'tfidf__min_df': [5, 10],
        'tfidf__ngram_range': [(1, 3), (1, 6)],
        'model__C': [1, 100],
        'model__loss': ['hinge']
    }

training_pipeline = Pipeline(
    steps=[('tfidf', TfidfVectorizer(stop_words="english")), ('model', model)])

gridSearchProcessor = GridSearchCV(estimator=training_pipeline,
                                   param_grid=grid_param,
                                   cv=5)

gridSearchProcessor.fit(X_train, Y_train)

best_params = gridSearchProcessor.best_params_
print("Best alpha parameter identified by grid search ", best_params)

best_result = gridSearchProcessor.best_score_
print("Best result identified by grid search ", best_result)

best_model = gridSearchProcessor.best_estimator_

# Step 4 - Model Evaluation

Y_pred = best_model.predict(X_test)
print('Accuracy Score - ', accuracy_score(Y_test, Y_pred))
print(classification_report(Y_test, Y_pred))

Out:

Size of Training Data  7204
Size of Test Data  1801
Best alpha parameter identified by grid search  {'model__C': 1,
'model__kernel': 'linear', 'tfidf__min_df': 5, 'tfidf__ngram_range': (1, 6)}
Best result identified by grid search  0.739867279666898
Accuracy Score -  0.7368128817323709
              precision    recall  f1-score   support

         APT       1.00      0.25      0.40        16
        Core       0.74      0.77      0.75       544
       Debug       0.89      0.77      0.82       300
         Doc       0.50      0.17      0.25        12
        Text       0.61      0.45      0.52       235
          UI       0.71      0.81      0.76       694

    accuracy                           0.74      1801
   macro avg       0.74      0.54      0.58      1801
weighted avg       0.74      0.74      0.73      1801

Based on the accuracy and classification report, we have achieved an accuracy of 73%,
and we can conclude that this model is able to predict the software component that a
bug is referring to more accurately than the priority. While some of the improvement
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is due to the additional steps of grid search and cross-validation, most of it is simply
because there is a relationship that the model could identify between the bug descrip‐
tion and the Component it refers to. The Component feature does not show the same
level of the class imbalance problem that we noticed earlier. However, even within
Component, we can see the poor results for the software component Doc, which has
few observations compared to the other components. Also, comparing with the base‐
line, we can see that this model improves in performance. We can try to balance our
data, or we can make an informed business decision that it’s more important for the
model to predict those software components that have a larger number of bugs:

clf = DummyClassifier(strategy='most_frequent')
clf.fit(X_train, Y_train)
Y_pred_baseline = clf.predict(X_test)
print ('Accuracy Score - ', accuracy_score(Y_test, Y_pred_baseline))

Out:

Accuracy Score -  0.38534147695724597

Let’s also attempt to understand how this model tries to make its predictions by look‐
ing at where it works well and where it fails. We will first sample two observations
where the predictions were accurate:

# Create a DataFrame combining the Title and Description,
# Actual and Predicted values that we can explore
frame = { 'text': X_test, 'actual': Y_test, 'predicted': Y_pred }
result = pd.DataFrame(frame)

result[result['actual'] == result['predicted']].sample(2)

Out:

 text actual predicted

28225 Move static initializer lacks atomic undo.When a method is moved the move can be atomically
undone with a single Undo command. But when a static initializer is moved it can only be
undone with an Undo command issued in both the source and destination files

UI UI

30592 Debug view steals focus when breakpoint hitM5 - I20060217-1115 When you debug a
program that has breakpoints when the debugger hits a breakpoint pressing Ctrl+Sht+B does
not remove the breakpoint even though the line looks like it has the focus. To actually remove
the breakpoint one has to click in the editor on the proper line and repress the keys

Debug Debug

We can see that when a bug is classified as belonging to the Debug component the
description makes use of terms like debugger and breakpoint, whereas when a bug is
classified in UI, we see an indication of Undo and movement. This seems to indicate
that the trained model is able to learn associations between words in the description
and the corresponding software component. Let’s also look at some observations
where the predictions were incorrect:

result[result['actual'] != result['predicted']].sample(2)
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Out:

 text actual predicted

16138 Line wrapping on @see tags creates a new warning Invalid parameters declarationIn Eclipce
3.0M5 with the javadoc checking enabled linewrapping will cause a warning Javadoc: Invalid
parameters declaration This will cause the warning: /** * @see
com.xyz.util.monitoring.MonitoringObserver#monitorSetValue */ where this will not : /** *
@see com.xyz.util.monitoring.MonitoringObserver#monitorSetValue *

Text Core

32903 After a String array is created eclipse fails to recognize methods for an object.Type these lines
in any program. String abc = new String {a b c} System. After System. eclipse wont list all the
available methods

Core UI

Here, it becomes more difficult to identify reasons for an incorrect classification, but
we must analyze further if we want to improve the accuracy of our model. After we
build a model, we must investigate our predictions and understand why the model
made these predictions. There are several techniques that we can use to explain
model predictions, and this will be covered in more detail in Chapter 7.

Closing Remarks
In this chapter, we presented a blueprint for performing the different steps in build‐
ing a supervised text classification model. It starts with the data preparation steps,
including the balancing of classes, if required. We then showed the steps for creating
train and test splits, including the use of cross-validation as the preferred technique
to arrive at an accurate measure of model accuracy. We then presented grid search as
one of the techniques to validate different settings of hyperparameters to find the
most optimal combination. Supervised machine learning is a broad area with multi‐
ple applications like loan default prediction, ad-click prediction, etc. This blueprint
presents an end-to-end technique for building a supervised machine learning model
and can be extended to problems outside of text classification as well.

Further Reading
Bergstra, James, and Yoshua Bengio. “Random Search for Hyper-Parameter Optimi‐

zation.” 2012. http://www.jmlr.org/papers/volume13/bergstra12a/bergstra12a.pdf.
Berwick, R. “An Idiot’s guide to Support Vector Machines.” http://web.mit.edu/6.034/

wwwbob/svm-notes-long-08.pdf.
Kohavi, Ron. “A Study of CrossValidation and Bootstrap for Accuracy Estimation and

Model Selection.” http://ai.stanford.edu/~ronnyk/accEst.pdf.
Raschka, Sebastian. “Model Evaluation, Model Selection, and Algorithm Selection in

Machine Learning.” 2018. https://arxiv.org/pdf/1811.12808.pdf.
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CHAPTER 7

How to Explain a Text Classifier

In the previous chapters, we have learned a lot about advanced analytical methods for
unstructured text data. Starting with statistics and using NLP, we have found interest‐
ing insights from text.

Using supervised methods for classification, we have assigned text documents to
already-given categories by training algorithms. Although we have checked the qual‐
ity of the classification process, we have skipped an important aspect: we have no idea
why the model has decided to assign a category to a text.

This might sound unimportant if the category was correct. However, in daily life you
often have to explain your own decisions and make them transparent to others. The
same is true for machine learning algorithms.

In real-life projects, you will more often than not hear the question “Why has the
algorithm assigned this category/sentiment?” Even before that, understanding how
the algorithm has learned something will help you to improve the classification by
using different algorithms, adding features, changing weights, and so on. Compared
to structured data, the question is much more important with text as humans can
interpret the text itself. Moreover, text has many artifacts such as signatures in emails
that you better avoid and make sure that they are not the dominant features in your
classification.

In addition to the technological perspective, there are also some legal aspects to keep
in mind. You might be responsible for proving that your algorithm is not biased or
does not discriminate. The GDPR in the European Union even demands that
for algorithms that make decisions (like allowing only certain kinds of payment) on
public websites.
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Last but not least, trust needs information. If you make your results as transparent as
possible, you will enormously increase the confidence and trust that somebody has in
your method.

What You’ll Learn and What We’ll Build
In this chapter, we will take a look at several methods for explaining the results of a
supervised machine learning model. Wherever possible, we will build on classifica‐
tion examples that have been part of the previous chapters.

We will start by revisiting the classification of the bug reports from Chapter 6. Some
reports were classified correctly, some not. We will take a step back and analyze
whether classification is always a binary decision. For some models, it is not, and we
will calculate the probabilities of bug reports belonging to a certain class and check
with the correct values (the so-called ground truth).

In the next section, we will analyze which features were responsible for the decision
of the model. We can calculate this using support vector machines. We will try to
interpret the results and see if we can use that knowledge to improve the method.

Afterward, we will take a more general approach and introduce local interpretable
model-agnostic explanations (LIME). LIME is (almost) agnostic to the specific
machine learning model and can explain the results of many algorithms.

People have been researching explainable AI a lot in recent years and came up with a
more sophisticated model called Anchor, which we will present in the last part of this
chapter.

After studying this chapter, you will know different methods for explaining the
results of supervised machine learning models. You will be able to use this for your
own projects and decide which of the methods is best suited for your specific require‐
ments. You will be able to interpret the results and create intuitive visualizations to
make them easily understandable for nonexperts.

Blueprint: Determining Classification Confidence
Using Prediction Probability
You might remember the example from Chapter 6 where we tried to clas‐

sify the bug reports according to their component. We will now train a support vector
machine with the optimal parameters found in that chapter. The rest of the notation
stays the same:

svc = SVC(kernel="linear", C=1, probability=True, random_state=42)
svc.fit(X_train_tf, Y_train)
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1 Graphically, you can think of the probabilities as the distance of the samples to the hyperplane defined by the
SVM.

If you recall the classification report, we had a good average precision and recall of
75%, so the classification worked rather well. But there were some cases where the
prediction differed from the actual value. We will try to look at the results of these
predictions in more detail now to understand if there is a pattern that we can use to
distinguish between “good” and “bad” prediction without taking a look at the actual
results as those will be unknown in real classification scenarios.

For this, we will use the function predict_proba of the support vector machine
model, which tells us about the internals of the SVM, namely, the probabilities it cal‐
culated for the respective classes (obviously the prediction itself has the highest prob‐
ability).1 As a parameter, it expects a matrix consisting of document vectors. The
result is the probability for the different classes. As a first step, we are going to con‐
struct a DataFrame from the prediction results:

X_test_tf = tfidf.transform(X_test)
Y_pred = svc.predict(X_test_tf)
result = pd.DataFrame({ 'text': X_test.values, 'actual': Y_test.values,
                        'predicted': Y_pred })

Let’s try it with one document of the test dataset and assume that we want to optimize
our classification and are mainly interested in cases where the predictions are wrong:

result[result["actual"] != result["predicted"]].head()

Out:

 text actual predicted

2 NPE in Delta processor while executing JDT/UI ... Core UI

15 Inserting a block of text in editor badly alig... UI Text

16 Differences when debugging identical objects W... Debug Core

20 Foreach template doesnt work for class members... Core UI

21 exchange left and right operands for compariso... UI Core

Document 21 looks like a good candidate. The predicted class “Core” is wrong, but
“left” and “right” also sound like UI (which would be correct). Let’s take a deeper look
at that:

text = result.iloc[21]["text"]
print(text)
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Out:

exchange left and right operands for comparison operators changes semantics
Fix for Bug 149803 was not good.; ; The right fix should do the following;
if --> if --> if ; if ; if

This looks like a good candidate for a more detailed analysis as it contains words that
would naively speak for both Core and for UI. Maybe we can understand that in
more detail if we look at the probabilities. Calculating this is quite easy:

 svc.predict_proba(X_test_tf[21])

Out:

array([[0.002669, 0.46736578, 0.07725225, 0.00319434, 0.06874877,
        0.38076986]])

Remembering that the classes had the order APT, Core, Debug,  Doc, Text, and UI,
the algorithm was a bit more convinced of Core compared to UI, which would have
been its second choice.

Is this always the case? We will try to find out and calculate the decision probability
for all documents in the test dataset and add it to a DataFrame:

class_names = ["APT", "Core", "Debug", "Doc", "Text", "UI"]
prob = svc.predict_proba(X_test_tf)
# new dataframe for explainable results
er = result.copy().reset_index()
for c in enumerate(class_names):
    er[c] = prob[:, i]

Let’s take a look at some samples of the data frame and find out whether the predic‐
tions are better if the algorithm was quite convinced about its decision (i.e., the prob‐
ability for the chosen category was much higher than the others):

er[["actual", "predicted"] + class_names].sample(5, random_state=99)

Out:

 actual predicted APT Core Debug Doc Text UI

266 UI UI 0.000598 0.000929 0.000476 0.001377 0.224473 0.772148

835 Text Text 0.002083 0.032109 0.001481 0.002085 0.696666 0.265577

998 Text Text 0.000356 0.026525 0.003425 0.000673 0.942136 0.026884

754 Core Text 0.003862 0.334308 0.011312 0.015478 0.492112 0.142927

686 UI UI 0.019319 0.099088 0.143744 0.082969 0.053174 0.601705

Looking at the table, there is only one wrong prediction (754). In this case, the algo‐
rithm was quite “unsure” and decided for the category with a probability of less than
50%.  Can we find a pattern for this?
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Let’s try to build two DataFrames, one with correct and another with wrong predic‐
tions. Afterward, we will analyze the distribution of the highest probability and see
whether we can find any differences:

er['max_probability'] = er[class_names].max(axis=1)
correct = (er[er['actual'] == er['predicted']])
wrong   = (er[er['actual'] != er['predicted']])

We will now plot this as a histogram:

correct["max_probability"].plot.hist(title="Correct")
wrong["max_probability"].plot.hist(title="Wrong")

Out:
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We can see that in the case of correct predictions, the model often decided with high
probabilities, whereas the probabilities were considerably lower when the decision
was wrong. As we will see later, the small peak in the wrong category with high prob‐
ability is due to short texts or missing words.

Finally, we will take a look at whether we can improve the results if we only consider
decisions that have been made with a probability of more than 80%:

high = er[er["max_probability"] > 0.8]
print(classification_report(high["actual"], high["predicted"]))

Out:

                precision    recall  f1-score   support

         APT       0.90      0.75      0.82        12
        Core       0.94      0.89      0.92       264
       Debug       0.94      0.99      0.96       202
         Doc       1.00      0.67      0.80         3
        Text       0.78      0.75      0.77        72
          UI       0.90      0.92      0.91       342

    accuracy                           0.91       895
   macro avg       0.91      0.83      0.86       895
weighted avg       0.91      0.91      0.91       895

Compare this to the original result, shown here:

print(classification_report(er["actual"], er["predicted"]))

Out:

              precision    recall  f1-score   support

         APT       0.90      0.56      0.69        16
        Core       0.76      0.77      0.76       546
       Debug       0.90      0.78      0.84       302
         Doc       1.00      0.25      0.40        12
        Text       0.64      0.51      0.57       236
          UI       0.72      0.82      0.77       699

    accuracy                           0.75      1811
   macro avg       0.82      0.62      0.67      1811
weighted avg       0.75      0.75      0.75      1811

We can see that we have considerably improved the precision for predicting the com‐
ponents Core, Debug, Text, and UI while at the same time increasing the recall. This
is great, as the explanation of the SVM has led us to a smaller subset of data in which
the classifier works better. However, in the components with few samples (Apt, Doc),
the result has actually only improved the recall. It seems that there are just too few
samples in these categories, and the algorithm has too little information to decide
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based on the text. In the case of Doc, we just removed most of the documents belong‐
ing to this class and so increased the recall.

The improvement came with a price, though. We have excluded more than 900 docu‐
ments, roughly half of the dataset. So, overall, we have actually found fewer docu‐
ments in the smaller dataset! In some projects, it might be useful to let the model only
decide in cases where it is quite “sure” and discard ambiguous cases (or classify them
by hand). This often depends on the business requirements.

In this section, we have found a correlation between the predicting probability and
the quality of results. However, we have not yet understood how the model predicts
(i.e., which words are used). We will analyze this in the next section.

Blueprint: Measuring Feature Importance of
Predictive Models
In this section, we want to find out which features were relevant for the

model to find the correct class. Fortunately, our SVM class can tell us the necessary
parameters (called coefficients):

svc.coef_

Out:

<15x6403 sparse matrix of type '<class 'numpy.float64'>'
       with 64451 stored elements in Compressed Sparse Row format>

6403 is the size of the vocabulary (check with len(tfidf.get_feature_names()), but
where does the 15 originate from? That is a bit more complicated. Technically, the
coefficients are organized in a matrix as each class competes against each other in a
one-to-one way. As we have six classes and classes do not have to compete against
themselves, there are 15 combinations (the binomial coefficient 6 over 2). The 15
coefficients are organized as described in Table 7-1.

Table 7-1. Coefficient layout for a multiclass SVC classifier

 APT Core Debug Doc Text UI

APT  0 1 2 3 4

Core   5 6 7 8

Debug    9 10 11

Doc     12 13

Text      14

UI       

Blueprint: Measuring Feature Importance of Predictive Models | 189



Coefficient Structure Depends on Machine Learning Model

The coefficients might have a completely different organization if
you use other classifiers. Even for SVM, using a nonlinear model
(created by SGDClassifier) creates only one coefficient set per class.
We will see some examples of this when we talk about ELI5.

The rows should be read first, so if we want to find out how the model distinguishes
APT from Core, we should take index 0 of the coefficients. However, we are more
interested in the difference of Core and UI, so we take index 8. In the first step, we
sort the coefficients by their values and keep the indices, which are the vocabulary
positions:

# coef_[8] yields a matrix, A[0] converts to array and takes first row
coef = svc.coef_[8].A[0]
vocabulary_positions = coef.argsort()
vocabulary = tfidf.get_feature_names()

Afterward, we now take the top positive and negative contributions:

top_words = 10
top_positive_coef = vocabulary_positions[-top_words:].tolist()
top_negative_coef = vocabulary_positions[:top_words].tolist()

Then we will aggregate this to a DataFrame to make it easier to display the results:

core_ui = pd.DataFrame([[vocabulary[c],
                  coef[c]] for c in top_positive_coef + top_negative_coef],
                  columns=["feature", "coefficient"]).sort_values("coefficient")

We would like to visualize the contributions of the coefficients to make it easy to
understand. Positive values favor the Core component, and negative values prefer UI,
as shown in Figure 7-1. To obtain this, we use the following:

core_ui.set_index("feature").plot.barh()

These results are quite easy to interpret. The SVM model has nicely learned that the
words compiler and ast are specific to the Core component, whereas wizard, ui, and
dialog are used to identify bugs in the UI component. It seems a quick fix is more
popular in the UI, which emphasizes the long-term stability of the core.

We have just found the features that are important for the whole SVM model to
choose between Core and UI. But this does not indicate which features are important
to identify a bug that can be categorized as Core given any bug report. If we want to
get these features for the Core component and consider the previous matrix, we need
indices 5, 6, 7, and 8. With this strategy, we have ignored the difference between APT
and Core. To take this into account, we need to subtract index 0:

c = svc.coef_
coef = (c[5] + c[6] + c[7] + c[8] - c[0]).A[0]
vocabulary_positions = coef.argsort()
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Figure 7-1. Word contributions to UI (negative) and Core (positive).

The rest of the code is almost identical to the previous code. We now extend the dia‐
gram to 20 words (Figure 7-2):

top_words = 20
top_positive_coef = vocabulary_positions[-top_words:].tolist()
top_negative_coef = vocabulary_positions[:top_words].tolist()
core = pd.DataFrame([[vocabulary[c], coef[c]]
                      for c in top_positive_coef + top_negative_coef], 
                    columns=["feature", "coefficient"]).\
          sort_values("coefficient")
core.set_index("feature").plot.barh(figsize=(6, 10),
              color=[['red']*top_words + ['green']*top_words])

In the diagram, you can see a lot of words that the model uses to identify the Core
component and in the lower part those that are used to primarily identify other com‐
ponents.

You can use the methods described in this blueprint to make the results of the SVM
model transparent and explainable. In many projects, this has proved to be valuable
as it takes away the “magic” and the subjectivity of machine learning.

This works quite well, but we do not yet know how sensitive the model is to changes
in certain words. This is a more complicated question that we will try to answer in the
next section.
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Figure 7-2. Coefficients favoring or opposing the Core component.
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Blueprint: Using LIME to Explain the Classification
Results
LIME is an acronym for “Local Interpretable Model-Agnostic Explana‐

tions” and is a popular framework for explainable machine learning. It was conceived
at the University of Washington and is publicly available on GitHub.

Let’s take a look at the defining features of LIME. It works locally by taking a look at
each prediction separately. This is achieved by modifying the input vector to find the
local components that the predictions are sensitive to.

Explainability Needs Computation Time

Running the explainer code can take considerable time. We tried to
tailor the examples in a way that you don’t have to wait for more
than 10 minutes on normal computers. However, by increasing the
sample size, this can easily take hours.

From the behavior in the vicinity of the vector, it will draw conclusions about which
components are more or less important. LIME will visualize the contributions and
explain the decision mechanism of the algorithm for individual documents.

LIME does not depend on a specific machine learning model and can be applied to a
multitude of problems. Not every model qualifies; the model needs to predict the
probabilities of the categories. Not all support vector machine models can do that. In
addition, using complicated models where predictions take considerable time is not
very practical in high-dimensional feature spaces like those common in text analytics.
As LIME attempts to locally modify the feature vectors, it needs to perform a lot of
predictions and in this case takes a long time to finish.

Finally, LIME will generate an explanation for the model on a per-sample basis and
allow you to understand the model. You can use this to improve your model but also
to explain how a classification works. Although the model will still be a black box,
you will gain some knowledge of what might be going on in the box.

Let’s get back to the classification problem of the previous section and try to find a
LIME explanation for a few samples. As LIME wants text as input and classification
probabilities as output, we arrange the vectorizer and classifier in a pipeline:

from sklearn.pipeline import make_pipeline
pipeline = make_pipeline(tfidf, best_model)
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The pipeline should be able to make predictions if we give it some text, as done here:

pipeline.predict_proba(["compiler not working"])

Out:

array([[0.00240522, 0.95605684, 0.00440957, 0.00100242, 0.00971824,
        0.02640771]])

The classifier suggests with very high probability to put this in class 2, which is Core.
So, our pipeline works exactly in the way we want it: we can give it text documents as
parameters, and it returns the probabilities for the documents belonging to each cate‐
gory. Now it’s time to turn on LIME by first importing the package (you might have
to install the package first with pip or conda). Afterward, we will create an explainer,
which is one of the central elements of LIME and is responsible for explaining indi‐
vidual predictions:

from lime.lime_text import LimeTextExplainer
explainer = LimeTextExplainer(class_names=class_names)

We check the DataFrame for classes that have been wrongly predicted in the
following:

er[er["predicted"] != er["actual"]].head(5)

Out:

 index text actual predicted APT Core Debug Doc Text UI

2 2 NPE in Delta
processor while
executing JDT/UI ...

Core UI 0.003357 0.309548 0.046491 0.002031 0.012309 0.626265

15 15 Inserting a block of
text in editor badly
alig...

UI Text 0.001576 0.063076 0.034610 0.003907 0.614473 0.282356

16 16 Differences when
debugging
identical objects
W...

Debug Core 0.002677 0.430862 0.313465 0.004193 0.055838 0.192965

20 20 Foreach template
doesnt work for
class members...

Core UI 0.000880 0.044018 0.001019 0.000783 0.130766 0.822535

21 21 exchange left and
right operands for
compariso...

UI Core 0.002669 0.467366 0.077252 0.003194 0.068749 0.380770

Take a look at the corresponding record (row 21 in our case):

id = 21
print('Document id: %d' % id)

194 | Chapter 7: How to Explain a Text Classifier



print('Predicted class =', er.iloc[id]["predicted"])
print('True class: %s' % er.iloc[id]["actual"])

Out:

Document id: 21
Predicted class = Core
True class: UI

Now it’s time for LIME to explain this to us!

exp = explainer.explain_instance(result.iloc[id]["text"],
      pipeline.predict_proba, num_features=10, labels=[1, 5])
print('Explanation for class %s' % class_names[1])
print('\n'.join(map(str, exp.as_list(label=1))))
print()
print('Explanation for class %s' % class_names[5])
print('\n'.join(map(str, exp.as_list(label=5))))

Out:

Explanation for class Core
('fix', -0.14306948642919184)
('Bug', 0.14077384623641856)
('following', 0.11150012169630388)
('comparison', 0.10122423126000728)
('Fix', -0.0884162779420967)
('right', 0.08315255286108318)
('semantics', 0.08143857054730141)
('changes', -0.079427782008582)
('left', 0.03188240169394561)
('good', -0.0027133756042246504)

Explanation for class UI
('fix', 0.15069083664026453)
('Bug', -0.14853911521141774)
('right', 0.11283930406785869)
('comparison', -0.10654654371478504)
('left', -0.10391669738035045)
('following', -0.1003931859632352)
('semantics', -0.056644426928774076)
('Fix', 0.05365037666619837)
('changes', 0.040806391076561165)
('good', 0.0401761761717476)

LIME shows us which words it thinks are in favor (positive) or against (negative) a
certain class. This is quite easy and similar to what we have achieved in the SVM
example. Even better, now it’s independent of the model itself; it just needs to support
predict_proba (which is also true for Random Forest and so on).
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With LIME, you can extend the analysis to more classes and create a graphics repre‐
sentation of their specific words:

exp = explainer.explain_instance(result.iloc[id]["text"],
            pipeline.predict_proba, num_features=6, top_labels=3)
exp.show_in_notebook(text=False)

Out:

This looks intuitive and much more suitable for interpretation and even inclusion in
a presentation. We can clearly see that fix and right are crucial for assigning the UI
class and at the same time against Core. Bug, however, speaks for Core, as do compar‐
ison and semantics. Unfortunately, this is not what a human would accept as rules for
classification; they seem too specific, and there is no abstraction. In other words, our 
model looks overfitted.

Improving Models

With this knowledge and the expertise of people familiar with the
tickets, you could improve the model. We could, for example, ask if
Bug is really specific to Core or if we’d better make it a stop word. It
might also prove useful to convert everything to lowercase.
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LIME can even support you in finding representative samples that help you interpret
the model performance as a whole. The feature is called submodular picks and works
like this:

from lime import submodular_pick
import numpy as np
np.random.seed(42)
lsm = submodular_pick.SubmodularPick(explainer, er["text"].values,
                                        pipeline.predict_proba,
                                        sample_size=100,
                                        num_features=20,
                                        num_exps_desired=5)

The individual “picks” can be visualized as shown previously in the notebook and are
even more complete now with highlighting. We show only the first of the picks here:

lsm.explanations[0].show_in_notebook()

Out:
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In the following case, we can interpret the results, but it does not look like the model
learned the abstraction, which is again a sign of overfitting.

The LIME software module works for linear support vector machines in scikit-learn
but not for those with more complex kernels. The graphical presentation is nice but is
not directly suitable for presentations. Therefore, we will take a look at ELI5, which is
an alternative implementation and tries to overcome these problems.

Blueprint: Using ELI5 to Explain the Classification
Results
ELI5 (“Explain it to me like I’m 5”) is another popular software library for

machine learning explanation also using the LIME algorithm. As it can be used for 
nonlinear SVMs and has a different API, we will take a short look at it and show how
to use it in our case.

ELI5 needs a model that has been trained with libsvm, which our SVC model from
before unfortunately is not. Luckily, training an SVM is really fast, so we can create a
new classifier with the same data, but with a libsvm-based model, and check its per‐
formance. You might remember the classification report from Chapter 6, which gives
a good summary about the quality of the model:

from sklearn.linear_model import SGDClassifier
svm = SGDClassifier(loss='hinge', max_iter=1000, tol=1e-3, random_state=42)
svm.fit(X_train_tf, Y_train)
Y_pred_svm = svm.predict(X_test_tf)
print(classification_report(Y_test, Y_pred_svm))

Out:

              precision    recall  f1-score   support

         APT       0.89      0.50      0.64        16
        Core       0.77      0.78      0.77       546
       Debug       0.85      0.84      0.85       302
         Doc       0.75      0.25      0.38        12
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        Text       0.62      0.59      0.60       236
          UI       0.76      0.79      0.78       699

    accuracy                           0.76      1811
   macro avg       0.77      0.62      0.67      1811
weighted avg       0.76      0.76      0.76      1811

Taking a look at the last line, this is roughly as good as what we have achieved with
SVC. Thus, it makes sense to explain it! Using ELI5, finding explanations for this
model is easy:

import eli5
eli5.show_weights(svm, top=10, vec=tfidf, target_names=class_names)

The positive features (i.e., words) are shown in green. More intense shades of green
mean a larger contribution of the word to the corresponding class. The red colors
work exactly opposite: words appearing in red “repel” the classes (for example, “refac‐
toring” in the lower part of the second row strongly rejects class Core). <BIAS> is a
special case and contains the so-called intercept, i.e., systematic failures of the model.

As you can see, we now get weights for the individual classes. This is due to the non-
linear SVM model working differently in multiclass scenarios compared to SVC. Each
class is “scored” on its own, and there is no competition. At first sight, the words look
very plausible.

ELI5 can also explain individual observations:

eli5.show_prediction(svm, X_test.iloc[21],  vec=tfidf, target_names=class_names)
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This is a nice visualization for understanding which words contribute to the algo‐
rithm deciding the categories. Compared to the original LIME package, with ELI5
you need considerably less code, and you can use ELI5 for nonlinear SVM models.
Depending on your classifier and use case, you might decide on LIME or ELI5. Due
to the same method, the results should be comparable (if not identical).

Work in Progress

ELI5 is still under heavy development, and you might experience
difficulties with new scikit-learn versions. We have used ELI5 ver‐
sion 0.10.1 in this chapter.

ELI5 is an easy-to-use software library for understanding and visualizing the decision
logic of classifiers, but it also suffers from the shortcomings of the underlying LIME
algorithm, such as explainability by example only. To make the black-box classifica‐
tion more transparent, it would be insightful to gain access to the “rules” that a model
uses. That was the motivation for the group at Washington University to create a
follow-up project called Anchor.

Blueprint: Using Anchor to Explain the
Classification Results
Like LIME, Anchor is model agnostic and works for any black-box model.

As a tool for explanations, it creates rules, the so-called anchors, which explain the
behavior of the model. Reading these rules, you will not only be able to explain a pre‐
diction of the model but also predict in the same way as the model has learned to.

Compared to LIME, Anchor has considerable advantages for better explaining the
models with the rules. However, the software itself is quite new and still a work in
progress. Not all examples were working for us, so we chose a selection of methods
that help in interpreting the classification model.

Using the Distribution with Masked Words
There are different ways Anchor can be used. We start with the so-called unknown
distribution. Anchor will explain how a model makes a decision by replacing existing
tokens that are supposed to be unimportant for the prediction with the word
unknown.
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Again, we will use the document with an ID of 21. In this case, the classifier has the
difficult task of choosing between two categories that have roughly the same proba‐
bility. This should make it an interesting example for studying.

To create (semantic) variance in the text, Anchor uses spaCy’s word vectors and needs
a spaCy model that includes these vectors, like en_core_web_lg.

As a prerequisite, you should therefore install anchor-exp and spacy (using either
conda or pip) and load the model with the following:

python -m spacy download en_core_web_lg

In the first step, we can then instantiate our explainer. The explainer has some proba‐
bilistic elements, so it’s better to restart the random-number generator at the same
time:

np.random.seed(42)
explainer_unk = anchor_text.AnchorText(nlp, class_names, \
                use_unk_distribution=True)

Let’s check the predicted results and alternatives and compare them to the ground
truth. predicted_class_ids contains the indices of the predicted classes with
decreasing probability, so the element 0 is the prediction, and element 1 is its closest
competitor:

text = er.iloc[21]["text"]
actual = er.iloc[21]["actual"]
# we want the class with the highest probability and must invert the order
predicted_class_ids = np.argsort(pipeline.predict_proba([text])[0])[::-1]
pred = explainer_unk.class_names[predicted_class_ids[0]]
alternative = explainer_unk.class_names[predicted_class_ids[1]]
print(f'predicted {pred}, alternative {alternative}, actual {actual}')

Out:

predicted Core, alternative UI, actual UI

In the next step, we will let the algorithm find the rules for the predictions. The
parameters are the same as for LIME earlier:

exp_unk = explainer_unk.explain_instance(text, pipeline.predict, threshold=0.95)

The calculation can take up to 60 minutes depending on the speed of your CPU.

Everything is now contained in the explainer, so we can query the explainer to find
out about the inner workings of the model:

print(f'Rule: {" AND ".join(exp_unk.names())}')
print(f'Precision: {exp_unk.precision()}')

Out:

Rule: following AND comparison AND Bug AND semantics AND for
Precision: 0.9865771812080537
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So, the rule tells us that an occurrence of the words following and comparison com‐
bined with Bug and semantic leads to a prediction of “Core” with more than 98% pre‐
cision, which is unfortunately wrong. We can now also find typical examples that the
model would classify as Core:

print(f'Made-up examples where anchor rule matches and model predicts {pred}\n')
print('\n'.join([x[0] for x in exp_unk.examples(only_same_prediction=True)]))

The UNK token shown next stands for “unknown” and means that the word at the
corresponding position is not important:

Made-up examples where anchor rule matches and model predicts Core

UNK left UNK UNK UNK UNK comparison operators UNK semantics Fix for Bug UNK UNK
exchange left UNK UNK operands UNK comparison operators changes semantics Fix fo
exchange UNK and UNK operands UNK comparison UNK UNK semantics UNK for Bug UNK U
exchange UNK and right UNK for comparison UNK UNK semantics UNK for Bug 149803 U
UNK left UNK UNK operands UNK comparison UNK changes semantics UNK for Bug 14980
exchange left UNK right UNK UNK comparison UNK changes semantics Fix for Bug UNK
UNK UNK and right operands for comparison operators UNK semantics Fix for Bug 14
UNK left and right operands UNK comparison operators changes semantics UNK for B
exchange left UNK UNK operands UNK comparison operators UNK semantics UNK for Bu
UNK UNK UNK UNK operands for comparison operators changes semantics Fix for Bug

We can also ask for examples where the rule matches but the model predicts the
wrong class:

print(f'Made-up examples where anchor rule matches and model predicts \
        {alternative}\n')
print('\n'.join([x[0] for x in exp_unk.examples(partial_index=0, \
      only_different_prediction=True)]))

Out:

Made-up examples where anchor rule matches and model predicts UI

exchange left and right UNK for UNK UNK UNK UNK Fix for UNK 149803 was not UNK .
exchange left UNK UNK UNK for UNK UNK UNK semantics Fix for Bug 149803 UNK not U
exchange left UNK UNK operands for comparison operators UNK UNK Fix UNK Bug 1498
exchange left UNK right operands UNK comparison UNK UNK UNK Fix for UNK UNK UNK
exchange left and right operands UNK UNK operators UNK UNK Fix UNK UNK UNK UNK U
UNK UNK and UNK UNK UNK comparison UNK UNK UNK Fix for UNK UNK was not good UNK
exchange left and UNK UNK UNK UNK operators UNK UNK Fix UNK Bug 149803 was not U
exchange left and right UNK UNK UNK operators UNK UNK UNK for Bug 149803 UNK UNK
exchange left UNK right UNK for UNK operators changes UNK Fix UNK UNK UNK was no
UNK left UNK UNK operands UNK UNK operators changes UNK UNK for UNK 149803 was n

To be honest, this is not a good result for the model. We would have expected that the
underlying rules learned by the models would be sensitive to words specific to the
different components. However, there is no obvious reason why following and Bug
would be specific to Core. More or less these are generic words that are not very char‐
acteristic of either of the categories.
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The UNK tokens are a bit misleading. Even if they are not important in this sample,
they might be replaced by other, realistic words that would influence the decision of
the algorithm. Anchor can also help us illustrate that.

Working with Real Words
By substituting use_unk_distribution=False in the original constructor of the
explainer, we can tell Anchor to use real words (similar to the one it is substituting by
using the word vectors from spaCy) and observe the behavior of the model:

np.random.seed(42)
explainer_no_unk = anchor_text.AnchorText(nlp, class_names,
                   use_unk_distribution=False, use_bert=False)
exp_no_unk = explainer_no_unk.explain_instance(text, pipeline.predict,
             threshold=0.95)
print(f'Rule: {" AND ".join(exp_no_unk.names())}')
print(f'Precision: {exp_no_unk.precision()}')

Out:

Rule: following AND Bug AND comparison AND semantics AND left AND right
Precision: 0.9601990049751243

The rules are a bit different from the earlier unknown distribution. It seems that some
of the words have become a bit more specific for the Core, like left and right, whereas
other words like for have vanished.

Let’s also ask Anchor to generate alternative texts that would also be (wrongly) classi‐
fied as Core as the previous rule applies:

Examples where anchor applies and model predicts Core:

exchange left and right suffixes for comparison operators affects semantics NEED
exchange left and right operands for comparison operators depends semantics UPDA
exchange left and right operands for comparison operators indicates semantics so
exchange left and right operands for comparison operators changes semantics Firm
exchange left and right operands into comparison dispatchers changes semantics F
exchange left and right operands with comparison operators changes semantics Fix
exchange left and right operands beyond comparison operators changes semantics M
exchange left and right operands though comparison representatives changes seman
exchange left and right operands before comparison operators depends semantics M
exchange left and right operands as comparison operators changes semantics THING

Some words have changed and have not affected the result of the classification. In
some cases, it is only prepositions, and normally this should not have an effect on the
results. However, operators can also be replaced by dispatchers without affecting the
results. Anchor shows you that it is stable against these modifications.

Compare the previous results to those where the model would (correctly) predict
“UI.” Again, the difference affects single words like changes, metaphors, and so on,
which definitely carry more meaning than the smaller modifications in the previous
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2 We had a hard time getting this to work, as it was suited only for numerical categories. We plan to make some
pull requests to get the upstream working for textual categories as well.

example, but it is highly unlikely that you as a human would interpret these words as
signals for a different category:

Examples where anchor applies and model predicts UI:

exchange left and good operands for comparison operators changes metaphors Fix i
exchange landed and right operands for comparison supervisors changes derivation
exchange left and happy operands for correlation operators changes equivalences
exchange left and right operands for scenario operators changes paradigms Fix be
exchange left and right operands for trade customers occurs semantics Fix as BoT
exchange did and right operands than consumer operators changes analogies Instal
exchange left and few operands for reason operators depends semantics Fix for Bu
exchange left and right operands for percentage operators changes semantics MESS
exchange left and right pathnames after comparison operators depends fallacies F
exchange left and right operands of selection operators changes descriptors Fix

Anchor also has an intuitive way of showing the results with the important words
highlighted in the notebook and also includes the rules it has calculated:2

exp_unk.show_in_notebook()

Out:

As it’s quite likely that you are also familiar with software development, it would be
hard to determine the correct category from the rules alone. In other words, this
means the model seems to be quite fragile when trained with the corpus. The “cor‐
rect” category can probably be determined only by a project contributor who has a lot
of context knowledge (which we will revisit later in Chapter 11). So, finding that a
classifier works does not necessarily mean that it has really learned in a way that is
transparent for us.

To summarize this section, Anchor is quite interesting. The authors of Anchor did
not choose version number 0.0.1 by chance; the program is still in its infancy. During
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our experiments, we have seen quite a few quirks, and to make it work in production,
a lot of things have to be improved. Conceptually, however, it is already really con‐
vincing for explaining single predictions and making models transparent. The calcu‐
lated rules especially are almost unique and cannot be created by any other solution.

Closing Remarks
Using the techniques presented in this chapter will help make your model predictions
more transparent.

From a technical perspective, this transparency can be a great help as it supports you
in choosing among competing models or improving your feature models. The techni‐
ques presented in this chapter give you insights into the “inner workings” of a model
and help to detect and improve untrustworthy models.

Considering the business perspective, explainability is a great selling proposition for
projects. It is much easier to talk about models and present them if you don’t exclu‐
sively pursue the black-box model but rather make your models transparent. Recent
articles in Forbes and VentureBeat have focused on this interesting development.
Being able to “trust” a model will be more and more important when you want to
build trustable machine learning solutions.

Explainable AI is a young field. We can expect to see tremendous progress, better
algorithms, and improved tooling in the future.

For most of the book, machine learning methods have worked nicely as black-box
models. This is fine, as long as the results are consistent and we don’t have to justify
the models. If either is challenged, as is becoming more common, then the time for
explainable AI has arrived.
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1 Blei, David M., et al. “Latent Dirichlet Allocation.” Journal of Machine Learning Research 3 (4–5): 993–1022.
doi:10.1162/jmlr.2003.3.4-5.993.

CHAPTER 8

Unsupervised Methods: Topic Modeling
and Clustering

When working with a large number of documents, one of the first questions you
want to ask without reading all of them is “What are they talking about?” You are
interested in the general topics of the documents, i.e., which (ideally semantic) words
are often used together.

Topic modeling tries to solve that challenge by using statistical techniques for finding
out topics from a corpus of documents. Depending on your vectorization (see Chap‐
ter 5), you might find different kinds of topics. Topics consist of a probability distri‐
bution of features (words, n-grams, etc.).

Topics normally overlap with each other; they are not clearly separated. The same is
true for documents: it is not possible to assign a document uniquely to a single topic;
a document always contains a mixture of different topics. The aim of topic modeling
is not primarily to assign a topic to an arbitrary document but to find the global
structure of the corpus.

Often, a set of documents has an explicit structure that is given by categories, key‐
words, and so on. If we want to take a look at the organic composition of the corpus,
then topic modeling will help a lot to uncover the latent structure.

Topic modeling has been known for a long time and has gained immense popularity
during the last 15 years, mainly due to the invention of LDA,1 a stochastic method for
discovering topics. LDA is flexible and allows many modifications. However, it is not
the only method for topic modeling (although you might believe this by looking at
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the literature, much of which is biased toward LDA). Conceptually simpler methods
are non-negative matrix factorization, singular-value decomposition (sometimes
called LSI), and a few others.

What You’ll Learn and What We’ll Build
In this chapter, we will take an in-depth look at the various methods of topic model‐
ing, try to find differences and similarities between the methods, and run them on the
same use case. Depending on your requirements, it might also be a good idea to not
only try a single method but compare the results of a few.

After studying this chapter, you will know the different methods of topic modeling
and their specific advantages and drawbacks. You will understand how topic model‐
ing can be applied not only to find topics but also to create quick summaries of docu‐
ment corpora. You will learn about the importance of choosing the correct
granularity of entities for calculating topic models. You have experimented with many
parameters to find the optimal topic model. You are able to judge the quality of the
resulting topic models by quantitative methods and numbers.

Our Dataset: UN General Debates
Our use case is to semantically analyze the corpus of the UN general debates. You
might know this dataset from the earlier chapter about text statistics.

This time we are more interested in the meaning and in the semantic content of the
speeches and how we can arrange them topically. We want to know what the speakers
are talking about and answer questions like these: Is there a structure in the docu‐
ment corpus? What are the topics? Which of them is most prominent? Does this
change over time?

Checking Statistics of the Corpus
Before starting with topic modeling, it is always a good idea to check the statistics of
the underlying text corpus. Depending on the results of this analysis, you will often
choose to analyze different entities, e.g., documents, sections, or paragraphs of text.

We are not so much interested in authors and additional information, so it’s enough
to work with one of the supplied CSV files:

import pandas as pd
debates = pd.read_csv("un-general-debates.csv")
debates.info()
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Out:

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 7507 entries, 0 to 7506
Data columns (total 4 columns):
session    7507 non-null int64
year       7507 non-null int64
country    7507 non-null object
text       7507 non-null object
dtypes: int64(2), object(2)
memory usage: 234.7+ KB

The result looks fine. There are no null values in the text column; we might use years
and countries later, and they also have only non-null values.

The speeches are quite long and cover a lot of topics as each country is allowed only
to deliver a single speech per year. Different parts of the speeches are almost always
separated by paragraphs. Unfortunately, the dataset has some formatting issues. Com‐
pare the text of two selected speeches:

print(repr(df.iloc[2666]["text"][0:200]))
print(repr(df.iloc[4729]["text"][0:200]))

Out:

'\ufeffIt is indeed a pleasure for me and the members of my delegation to
extend to Ambassador Garba our sincere congratulations on his election to the
presidency of the forty-fourth session of the General '
'\ufeffOn behalf of the State of Kuwait, it\ngives me pleasure to congratulate
Mr. Han Seung-soo,\nand his friendly country, the Republic of Korea, on
his\nelection as President of the fifty-sixth session of t'

As you can see, in some speeches the newline character is used to separate para‐
graphs. In the transcription of other speeches, a newline is used to separate lines. To
recover the paragraphs, we therefore cannot just split at newlines. It turns out that
splitting at stops, exclamation points, or question marks occurring at line ends works
well enough. We ignore spaces after the stops:

import re
df["paragraphs"] = df["text"].map(lambda text: re.split('[.?!]\s*\n', text))
df["number_of_paragraphs"] = df["paragraphs"].map(len)

From the analysis in Chapter 2, we already know that the number of speeches per
year does not change much. Is this also true for the number of paragraphs?

%matplotlib inline
debates.groupby('year').agg({'number_of_paragraphs': 'mean'}).plot.bar()

Our Dataset: UN General Debates | 209



Out:

The average number of paragraphs has dropped considerably over time. We would
have expected that, as the number of speakers per year increased and the total time
for speeches is limited.

Apart from that, the statistical analysis shows no systematic problems with the data‐
set. The corpus is still quite up-to-date; there is no missing data for any year. We can 
now safely start with uncovering the latent structure and detect topics.

Preparations
Topic modeling is a machine learning method and needs vectorized data. All topic
modeling methods start with the document-term matrix. Recalling the meaning of
this matrix (which was introduced in Chapter 4), its elements are word frequencies
(or often scaled as TF-IDF weights) of the words (columns) in the corresponding
documents (rows). The matrix is sparse, as most documents contain only a small
fraction of the vocabulary.

Let’s calculate the TF-IDF matrix both for the speeches and for the paragraphs of the
speeches. First, we have to import the necessary packages from scikit-learn. We start
with a naive approach and use the standard spaCy stop words:

from sklearn.feature_extraction.text import TfidfVectorizer
from spacy.lang.en.stop_words import STOP_WORDS as stopwords

Calculating the document-term matrix for the speeches is easy; we also include
bigrams:
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tfidf_text = TfidfVectorizer(stop_words=stopwords, min_df=5, max_df=0.7)
vectors_text = tfidf_text.fit_transform(debates['text'])
vectors_text.shape

Out:

(7507, 24611)

For the paragraphs, it’s a bit more complicated as we have to flatten the list first. In
the same step, we omit empty paragraphs:

# flatten the paragraphs keeping the years
paragraph_df = pd.DataFrame([{ "text": paragraph, "year": year } 
                               for paragraphs, year in \
                               zip(df["paragraphs"], df["year"]) 
                                    for paragraph in paragraphs if paragraph])

tfidf_para_vectorizer = TfidfVectorizer(stop_words=stopwords, min_df=5,
                                        max_df=0.7)
tfidf_para_vectors = tfidf_para_vectorizer.fit_transform(paragraph_df["text"])
tfidf_para_vectors.shape

Out:

(282210, 25165)

Of course, the paragraph matrix has many more rows. The number of columns
(words) is also different because min_df and max_df have an effect in selecting fea‐
tures, as the number of documents has changed.

Nonnegative Matrix Factorization (NMF)
The conceptually easiest way to find a latent structure in the document corpus is the
factorization of the document-term matrix. Fortunately, the document-term matrix
has only positive-value elements; therefore, we can use methods from linear algebra
that allow us to represent the matrix as the product of two other nonnegative matri‐
ces. Conventionally, the original matrix is called V, and the factors are W and H:

V ≈ W · H

Or we can represent it graphically (visualizing the dimensions necessary for matrix
multiplication), as in Figure 8-1.

Depending on the dimensions, the factorization can be performed exactly. But as this
is so much more computationally expensive, an approximate factorization is
sufficient.
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Figure 8-1. Schematic nonnegative matrix factorization; the original matrix V is decom‐
posed into W and H.

In the context of text analytics, both W and H have an interpretation. The matrix W
has the same number of rows as the document-term matrix and therefore maps docu‐
ments to topics (document-topic matrix). H has the same number of columns as fea‐
tures, so it shows how the topics are constituted of features (topic-feature matrix).
The number of topics (the columns of W and the rows of H) can be chosen arbitrar‐
ily. The smaller this number, the less exact the factorization.

Blueprint: Creating a Topic Model Using NMF for Documents
It’s really easy to perform this decomposition for speeches in scikit-learn.
As (almost) all topic models need the number of topics as a parameter, we
arbitrarily choose 10 topics (which will later turn out to be a good choice):

from sklearn.decomposition import NMF

nmf_text_model = NMF(n_components=10, random_state=42)
W_text_matrix = nmf_text_model.fit_transform(tfidf_text_vectors)
H_text_matrix = nmf_text_model.components_

Similar to the TfidfVectorizer, NMF also has a fit_transform method that returns
one of the positive factor matrices. The other factor can be accessed by the compo
nents_ member variable of the NMF class.

Topics are word distributions. We are now going to analyze this distribution and see
whether we can find an interpretation of the topics. Taking a look at Figure 8-1, we
need to consider the H matrix and find the index of the largest values in each row
(topic) that we then use as a lookup index in the vocabulary. As this is helpful for all
topic models, we define a function for outputting a summary:

def display_topics(model, features, no_top_words=5):
    for topic, word_vector in enumerate(model.components_):
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        total = word_vector.sum()
        largest = word_vector.argsort()[::-1] # invert sort order
        print("\nTopic %02d" % topic)
        for i in range(0, no_top_words):
            print("  %s (%2.2f)" % (features[largest[i]],
                  word_vector[largest[i]]*100.0/total))

Calling this function, we get a nice summary of the topics that NMF detected in the
speeches (the numbers are the percentage contributions of the words to the respective
topic):

display_topics(nmf_text_model, tfidf_text_vectorizer.get_feature_names())

Out:

Topic 00
co (0.79)
operation (0.65)
disarmament (0.36)
nuclear (0.34)
relations (0.25)

Topic 01
terrorism (0.38)
challenges (0.32)
sustainable (0.30)
millennium (0.29)
reform (0.28)

Topic 02
africa (1.15)
african (0.82)
south (0.63)
namibia (0.36)
delegation (0.30)

Topic 03
arab (1.02)
israel (0.89)
palestinian (0.60)
lebanon (0.54)
israeli (0.54)

Topic 04
american (0.33)
america (0.31)
latin (0.31)
panama (0.21)
bolivia (0.21)

Topic 05
pacific (1.55)
islands (1.23)
solomon (0.86)
island (0.82)
fiji (0.71)

Topic 06
soviet (0.81)
republic (0.78)
nuclear (0.68)
viet (0.64)
socialist (0.63)

Topic 07
guinea (4.26)
equatorial (1.75)
bissau (1.53)
papua (1.47)
republic (0.57)

Topic 08
european (0.61)
europe (0.44)
cooperation (0.39)
bosnia (0.34)
herzegovina (0.30)

Topic 09
caribbean (0.98)
small (0.66)
bahamas (0.63)
saint (0.63)
barbados (0.61)

Topic 00 and Topic 01 look really promising as people are talking about nuclear disar‐
mament and terrorism. These are definitely real topics in the UN general debates.

The subsequent topics, however, are more or less focused on different regions of the
world. This is due to speakers mentioning primarily their own country and neighbor‐
ing countries. This is especially evident in Topic 03, which reflects the conflict in the
Middle East.

It’s also interesting to take a look at the percentages with which the words contribute
to the topics. Due to the large number of words, the individual contributions are
quite small, except for guinea in Topic 07. As we will see later, the percentages of the
words within a topic are a good indication for the quality of the topic model. If the
percentage within a topic is rapidly decreasing, the topic is well-defined, whereas
slowly decreasing word probabilities indicate a less-pronounced topic. It’s much more
difficult to intuitively find out how well the topics are separated; we will take a look at
that later.

It would be interesting to find out how “big” the topics are, i.e., how many documents
could be assigned mainly to each topic. This can be calculated using the document-
topic matrix and summing the individual topic contributions over all documents.
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Normalizing them with the total sum and multiplying by 100 gives a percentage
value:

W_text_matrix.sum(axis=0)/W_text_matrix.sum()*100.0

Out:

array([11.13926287, 17.07197914, 13.64509781, 10.18184685, 11.43081404,
        5.94072639,  7.89602474,  4.17282682, 11.83871081,  6.68271054])

We can easily see that there are smaller and larger topics but basically no outliers.
Having an even distribution is a quality indicator. If your topic models have, for
example, one or two large topics compared to all the others, you should probably
adjust the number of topics.

In the next section, we will use the paragraphs of the speeches as entities for topic
modeling and try to find out if that improves the topics.

Blueprint: Creating a Topic Model for Paragraphs Using NMF
In UN general debates, as in many other texts, different topics are often
mixed, and it is hard for the topic modeling algorithm to find a common
topic of an individual speech. Especially in longer texts, it happens quite

often that documents do not cover just one but several topics. How can we deal with
that? One idea is to find smaller entities in the documents that are more coherent
from a topic perspective.

In our corpus, paragraphs are a natural subdivision of speeches, and we can assume
that the speakers try to stick to one topic within one paragraph. In many documents,
paragraphs are a good candidate (if they can be identified as such), and we have
already prepared the corresponding TF-IDF vectors. Let’s try to calculate their topic
models:

nmf_para_model = NMF(n_components=10, random_state=42)
W_para_matrix = nmf_para_model.fit_transform(tfidf_para_vectors)
H_para_matrix = nmf_para_model.components_

Our display_topics function developed earlier can be used to find the content of
the topics:

display_topics(nmf_para_model, tfidf_para_vectorizer.get_feature_names())
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Out:

Topic 00
nations (5.63)
united (5.52)
organization (1.27)
states (1.03)
charter (0.93)

Topic 01
general (2.87)
session (2.83)
assembly (2.81)
mr (1.98)
president (1.81)

Topic 02
countries (4.44)
developing (2.49)
economic (1.49)
developed (1.35)
trade (0.92)

Topic 03
people (1.36)
peace (1.34)
east (1.28)
middle (1.17)
palestinian (1.14)

Topic 04
nuclear (4.93)
weapons (3.27)
disarmament (2.01)
treaty (1.70)
proliferation (1.46)

Topic 05
rights (6.49)
human (6.18)
respect (1.15)
fundamental (0.86)
universal (0.82)

Topic 06
africa (3.83)
south (3.32)
african (1.70)
namibia (1.38)
apartheid (1.19)

Topic 07
security (6.13)
council (5.88)
permanent (1.50)
reform (1.48)
peace (1.30)

Topic 08
international (2.05)
world (1.50)
community (0.92)
new (0.77)
peace (0.67)

Topic 09
development (4.47)
sustainable (1.18)
economic (1.07)
social (1.00)
goals (0.93)

Compared to the previous results for topic modeling speeches, we have almost lost all
countries or regions except for South Africa and the Middle East. These are due to
the regional conflicts that sparked interest in other parts of the world. Topics in the
paragraphs like “Human rights,” “international relations,” “developing countries,”
“nuclear weapons,” “security council,” “world peace,” and “sustainable development”
(the last one probably occurring only lately) look much more reasonable compared to
the topics of the speeches. Taking a look at the percentage values of the words, we can
observe that they are dropping much faster, and the topics are more pronounced.

Latent Semantic Analysis/Indexing
Another algorithm for performing topic modeling is based on the so-called singular
value decomposition (SVD), another method from linear algebra.

Graphically, it is possible to conceive SVD as rearranging documents and words in a
way to uncover a block structure in the document-term matrix. There is a nice visual‐
ization of that process at topicmodels.info. Figure 8-2 shows the start of the
document-term matrix and the resulting block diagonal form.

Making use of the principal axis theorem, orthogonal n × n matrices have an eigen‐
value decomposition. Unfortunately, we do not have orthogonal square document-
term matrices (except for rare cases). Therefore, we need a generalization called
singular value decomposition. In its most general form, the theorem states that any m
× n matrix V can be decomposed as follows:

V = U · Σ · V*
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Figure 8-2. Visualization of topic modeling with SVD.
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U is a unitary m × m matrix, V* is an n × n matrix, and Σ is an m × n diagonal matrix
containing the singular values. There are exact solutions for this equation, but as they
take a lot of time and computational effort to find, we are looking for approximate
solutions that can be found quickly. The approximation works by only considering
the largest singular values. This leads to Σ becoming a t × t matrix; in turn, U has m ×
t and V* t × n dimensions. Graphically, this is similar to the nonnegative matrix facto‐
rization, as shown in Figure 8-3.

Figure 8-3. Schematic singular value decomposition.

The singular values are the diagonal elements of Σ. The document-topic relations are
included in U, whereas the word-to-topic mapping is represented by V*. Note that
neither the elements of U nor the elements of V* are guaranteed to be positive. The
relative sizes of the contributions will still be interpretable, but the probability explan‐
ation is no longer valid.

Blueprint: Creating a Topic Model for Paragraphs with SVD
In scikit-learn the interface to SVD is identical to that of NMF. This time
we start directly with the paragraphs:

from sklearn.decomposition import TruncatedSVD

svd_para_model = TruncatedSVD(n_components = 10, random_state=42)
W_svd_para_matrix = svd_para_model.fit_transform(tfidf_para_vectors)
H_svd_para_matrix = svd_para_model.components_

Our previously defined function for evaluating the topic model can also be used:

display_topics(svd_para_model, tfidf_para_vectorizer.get_feature_names())
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Out:

Topic 00
nations (0.67)
united (0.65)
international (0.58)
peace (0.46)
world (0.46)

Topic 01
general (14.04)
assembly (13.09)
session (12.94)
mr (10.02)
president (8.59)

Topic 02
countries (19.15)
development (14.61)
economic (13.91)
developing (13.00)
session (10.29)

Topic 03
nations (4.41)
united (4.06)
development (0.95)
organization (0.84)
charter (0.80)

Topic 04
nuclear (21.13)
weapons (14.01)
disarmament (9.02)
treaty (7.23)
proliferation (6.31)

Topic 05
rights (29.50)
human (28.81)
nuclear (9.20)
weapons (6.42)
respect (4.98)

Topic 06
africa (8.73)
south (8.24)
united (3.91)
african (3.71)
nations (3.41)

Topic 07
council (14.96)
security (13.38)
africa (8.50)
south (6.11)
african (3.94)

Topic 08
world (48.49)
international (41.03)
peace (32.98)
community (23.27)
africa (22.00)

Topic 09
development (63.98)
sustainable (20.78)
peace (20.74)
goals (15.92)
africa (15.61)

Most of the resulting topics are surprisingly similar to those of the nonnegative
matrix factorization. However, the Middle East conflict does not appear as a separate
topic this time. As the topic-word mappings can also have negative values, the nor‐
malization varies from topic to topic. Only the relative sizes of the words constituting
the topics are relevant.

Don’t worry about the negative percentages. These arise as SVD does not guarantee
positive values in W, so contributions of individual words might be negative. This
means that words appearing in documents “reject” the corresponding topic.

If we want to determine the sizes of the topics, we now have to take a look at the sin‐
gular values of the decomposition:

svd_para.singular_values_

Out:

array([68.21400653, 39.20120165, 36.36831431, 33.44682727, 31.76183677,
       30.59557993, 29.14061799, 27.40264054, 26.85684195, 25.90408013])

The sizes of the topics also correspond quite nicely with the ones from the NMF
method for the paragraphs.

Both NMF and SVF have used the document-term matrix (with TF-IDF transforma‐
tions applied) as a basis for the topic decomposition. Also, the dimensions of the U
matrix are identical to those of W; the same is true for V* and H. It is therefore not
surprising that both of these methods produce similar and comparable results. As
these methods are really fast to calculate, for real-life projects we recommend starting
with the linear algebra methods.

We will now turn away from these linear-algebra-based methods and focus on proba‐
bilistic topic models, which have become immensely popular in the past 20 years.
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2 For a more detailed description, see the Wikipedia page.

Latent Dirichlet Allocation
LDA is arguably the most prominent method of topic modeling in use today. It has
been popularized during the last 15 years and can be adapted in flexible ways to dif‐
ferent usage scenarios.

How does it work?

LDA views each document as consisting of different topics. In other words, each
document is a mix of different topics. In the same way, topics are mixed from words.
To keep the number of topics per document low and to have only a few, important
words constituting the topics, LDA initially uses a Dirichlet distribution, a so-called
Dirichlet prior. This is applied both for assigning topics to documents and for finding
words for the topics. The Dirichlet distribution ensures that documents have only a
small number of topics and topics are mainly defined by a small number of words.
Assuming that LDA generated topic distributions like the previous ones, a topic
could be made up of words like nuclear, treaty, and disarmament, while another topic
would be sampled by sustainable, development, etc.

After the initial assignments, the generative process starts. It uses the Dirichlet distri‐
butions for topics and words and tries to re-create the words from the original docu‐
ments with stochastic sampling. This process has to be iterated many times and is
therefore computationally intensive.2 On the other hand, the results can be used to
generate documents for any identified topic.

Blueprint: Creating a Topic Model for Paragraphs with LDA
Scikit-learn hides all these differences and uses the same API as the other
topic modeling methods:

from sklearn.feature_extraction.text import CountVectorizer

count_para_vectorizer = CountVectorizer(stop_words=stopwords, min_df=5,
                        max_df=0.7)
count_para_vectors = count_para_vectorizer.fit_transform(paragraph_df["text"])

from sklearn.decomposition import LatentDirichletAllocation

lda_para_model = LatentDirichletAllocation(n_components = 10, random_state=42)
W_lda_para_matrix = lda_para_model.fit_transform(count_para_vectors)
H_lda_para_matrix = lda_para_model.components_
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Waiting Time

Due to the probabilistic sampling, the process takes a lot longer
than NMF and SVD. Expect at least minutes, if not hours, of run‐
time.

Our utility function can again be used to visualize the latent topics of the paragraph
corpus:

display_topics(lda_para_model, tfidf_para.get_feature_names())

Out:

Topic 00
africa (2.38)
people (1.86)
south (1.57)
namibia (0.88)
regime (0.75)

Topic 01
republic (1.52)
government (1.39)
united (1.21)
peace (1.16)
people (1.02)

Topic 02
general (4.22)
assembly (3.63)
session (3.38)
president (2.33)
mr (2.32)

Topic 03
human (3.62)
rights (3.48)
international (1.83)
law (1.01)
terrorism (0.99)

Topic 04
world (2.22)
people (1.14)
countries (0.94)
years (0.88)
today (0.66)

Topic 05
peace (1.76)
security (1.63)
east (1.34)
middle (1.34)
israel (1.24)

Topic 06
countries (3.19)
development (2.70)
economic (2.22)
developing (1.61)
international (1.45)

Topic 07
nuclear (3.14)
weapons (2.32)
disarmament (1.82)
states (1.47)
arms (1.46)

Topic 08
nations (5.50)
united (5.11)
international (1.46)
security (1.45)
organization (1.44)

Topic 09
international (1.96)
world (1.91)
peace (1.60)
economic (1.00)
relations (0.99)

It’s interesting to observe that LDA has generated a completely different topic struc‐
ture compared to the linear algebra methods described earlier. People is the most
prominent word in three quite different topics. In Topic 04, South Africa is related to
Israel and Palestine, while in Topic 00, Cyprus, Afghanistan, and Iraq are related. This
is not easy to explain. This is also reflected in the slowly decreasing word weights of
the topics.

Other topics are easier to comprehend, such as climate change, nuclear weapons,
elections, developing countries, and organizational questions.

In this example, LDA does not yield much better results than either NMF or SVD.
However, due to the sampling process, LDA is not limited to sample topics just con‐
sisting of words. There are several variations, such as author-topic models, that can
also sample categorical features. Moreover, as there is so much research going on in
LDA, other ideas are published quite frequently, which extend the focus of the
method well beyond text analytics (see, for example, Minghui Qiu et al., “It Is Not
Just What We Say, But How We Say Them: LDA-based Behavior-Topic Model” or
Rahji Abdurehman, “Keyword-Assisted LDA: Exploring New Methods for Super‐
vised Topic Modeling”).
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3 pyLDAvis must be installed separately using pip install pyldavis or conda install pyldavis.

Blueprint: Visualizing LDA Results
As LDA is so popular, there is a nice package in Python to visualize the
LDA results called pyLDAvis.3 Fortunately, it can directly use the results
from sciki-learn for its visualization.

Be careful, this takes some time:

import pyLDAvis.sklearn

lda_display = pyLDAvis.sklearn.prepare(lda_para_model, count_para_vectors,
                            count_para_vectorizer, sort_topics=False)
pyLDAvis.display(lda_display)

Out:

There is a multitude of information available in the visualization. Let’s start with the
topic “bubbles” and click the topic. Now take a look at the red bars, which symbolize
the word distribution in the currently selected topic. As the length of the bars is not
decreasing quickly, Topic 2 is not very pronounced. This is the same effect you can
see in the table from “Blueprint: Creating a Topic Model for Paragraphs with LDA” on
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page 219 (look at Topic 1, where we have used the array indices, whereas pyLDAvis
starts enumerating the topics with 1).

To visualize the results, the topics are mapped from their original dimension (the
number of words) into two dimensions using principal component analysis (PCA), a
standard method for dimension reduction. This results in a point; the circle is added
to see the relative sizes of the topics. It is possible to use T-SNE instead of PCA by
passing mds="tsne" as a parameter in the preparation stage. This changes the inter‐
topic distance map and shows fewer overlapping topic bubbles. This is, however, just
an artifact of projecting the many word dimensions in just two for visualization.
Therefore, it’s always a good idea to look at the word distribution of the topics and
not exclusively trust a low-dimensional visualization.

It’s interesting to see the strong overlap of Topics 4, 6, and 10 (“international”),
whereas Topic 3 (“general assembly”) seems to be far away from all other topics. By
hovering over the other topic bubbles or clicking them, you can take a look at their
respective word distributions on the right side. Although not all the topics are per‐
fectly separated, there are some (like Topic 1 and Topic 7) that are far away from the
others. Try to hover over them and you will find that their word content is also differ‐
ent from each other. For such topics, it might be useful to extract the most represen‐
tative documents and use them as a training set for supervised learning.

pyLDAvis is a nice tool to play with and is well-suited for screenshots in presenta‐
tions. Even though it looks explorative, the real exploration in the topic models takes
place by modifying the features and the hyperparameters of the algorithms.

Using pyLDAvis gives us a good idea how the topics are arranged with respect to one
another and which individual words are important. However, if we need a more qual‐
itative understanding of the topics, we can use additional visualizations.

Blueprint: Using Word Clouds to Display and
Compare Topic Models
So far, we have used lists to display the topic models. This way, we could

nicely identify how pronounced the different topics were. However, in many cases 
topic models are used to give you a first impression about the validity of the corpus
and better visualizations. As we have seen in Chapter 1, word clouds are a qualitative
and intuitive instrument to show this.

We can directly use word clouds to show our topic models. The code is easily derived
from the previously defined display_topics function:
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import matplotlib.pyplot as plt
from wordcloud import WordCloud

def wordcloud_topics(model, features, no_top_words=40):
    for topic, words in enumerate(model.components_):
        size = {}
        largest = words.argsort()[::-1] # invert sort order
        for i in range(0, no_top_words):
            size[features[largest[i]]] = abs(words[largest[i]])
        wc = WordCloud(background_color="white", max_words=100,
                       width=960, height=540)
        wc.generate_from_frequencies(size)
        plt.figure(figsize=(12,12))
        plt.imshow(wc, interpolation='bilinear')
        plt.axis("off")
        # if you don't want to save the topic model, comment the next line
        plt.savefig(f'topic{topic}.png')

By using this code, we can qualitatively compare the results of the NMF model
(Figure 8-4) with those of the LDA model(Figure 8-5). Larger words are more impor‐
tant in their respective topics. If many words have roughly the same size, the topic is
not well-pronounced:

wordcloud_topics(nmf_para_model, tfidf_para_vectorizer.get_feature_names())
wordcloud_topics(lda_para_model, count_para_vectorizer.get_feature_names())

Word Clouds Use Individual Scaling

The font sizes in the word clouds use scaling within each topic sep‐
arately, and therefore it’s important to verify with the actual num‐
bers before drawing any final conclusions.

The presentation is now way more compelling. It is much easier to match topics
between the two methods, like 0-NMF with 8-LDA. For most topics, this is quite
obvious, but there are also differences. 1-LDA (“people republic”) has no equivalent
in NMF, whereas 9-NMF (“sustainable development”) cannot be found in LDA.

As we have found a nice qualitative visualization of the topics, we are now interested
in how that topic distribution has changed over time.
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Figure 8-4. Word clouds representing the NMF topic model.
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Figure 8-5. Word clouds representing the LDA topic model.
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Blueprint: Calculating Topic Distribution of
Documents and Time Evolution
As you can see in the analysis at the beginning of the chapter, the speech

metadata changes over time. This leads to the interesting question of how the distri‐
bution of the topics changes over time. It turns out that this is easy to calculate and
insightful.

Like the scikit-learn vectorizers, the topic models also have a transform method,
which calculates the topic distribution of existing documents keeping the already fit‐
ted topic model. Let’s use this to first separate speeches before 1990 from those after
1990. For this, we create NumPy arrays for the documents before and after 1990:

import numpy as np
before_1990 = np.array(paragraph_df["year"] < 1990)
after_1990 = ~ before_1990

Then we can calculate the respective W matrices:

W_para_matrix_early = nmf_para_model.transform(tfidf_para_vectors[before_1990])
W_para_matrix_late  = nmf_para_model.transform(tfidf_para_vectors[after_1990])
print(W_para_matrix_early.sum(axis=0)/W_para_matrix_early.sum()*100.0)
print(W_para_matrix_late.sum(axis=0)/W_para_matrix_late.sum()*100.0)

Out:

['9.34', '10.43', '12.18', '12.18', '7.82', '6.05', '12.10', '5.85', '17.36',
 '6.69']
['7.48', '8.34', '9.75', '9.75', '6.26', '4.84', '9.68', '4.68', '13.90',
 '5.36']

The result is interesting, as some percentages have changed considerably; specifically,
the size of the second-to-last topic is much smaller in the later years. We will now try
to take a deeper look at the topics and their changes over time.

Let’s try to calculate the distribution for individual years and see whether we can find
a visualization to uncover possible patterns:

year_data = []
years = np.unique(paragraph_years)
for year in tqdm(years):
    W_year = nmf_para_model.transform(tfidf_para_vectors[paragraph_years \
                                      == year])
    year_data.append([year] + list(W_year.sum(axis=0)/W_year.sum()*100.0))

To make the plots more intuitive, we first create a list of topics with their two most
important words:
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topic_names = []
voc = tfidf_para_vectorizer.get_feature_names()
for topic in nmf_para_model.components_:
    important = topic.argsort()
    top_word = voc[important[-1]] + " " + voc[important[-2]]
    topic_names.append("Topic " + top_word)

We then combine the results in a DataFrame with the previous topics as column
names, so we can easily visualize that as follows:

df_year = pd.DataFrame(year_data,
               columns=["year"] + topic_names).set_index("year")
df_year.plot.area()

Out:

In the resulting graph you can see how the topic distribution changes over the
year.  We can recognize that the “sustainable development” topic is continuously
increasing, while “south africa” has lost popularity after the apartheid regime ended.

Compared to showing the time development of single (guessed) words, topics seem
to be a more natural entity as they arise from the text corpus itself. Note that this 
chart was generated with an unsupervised method exclusively, so there is no bias in it.
Everything was already in the debates data; we have just uncovered it.

So far, we have used scikit-learn exclusively for topic modeling. In the Python ecosys‐
tem, there is a specialized library for topic models called Gensim, which we will now
investigate.
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Using Gensim for Topic Modeling
Apart from scikit-learn, Gensim is another popular tool for performing topic model‐
ing in Python. Compared to scikit-learn, it offers more algorithms for calculating
topic models and can also give estimates about the quality of the model.

Blueprint: Preparing Data for Gensim
Before we can start calculating the Gensim models, we have to prepare the
data. Unfortunately, the API and the terminology are different from
scikit-learn. In the first step, we have to prepare the vocabulary. Gensim

has no integrated tokenizer and expects each line of a document corpus to be already
tokenized:

# create tokenized documents
gensim_paragraphs = [[w for w in re.findall(r'\b\w\w+\b' , paragraph.lower())
                          if w not in stopwords]
                             for paragraph in paragraph_df["text"]]

After tokenization, we can initialize the Gensim dictionary with these tokenized
documents. Think of the dictionary as a mapping from words to columns (like the
features we used in Chapter 2):

from gensim.corpora import Dictionary
dict_gensim_para = Dictionary(gensim_paragraphs)

Similar to the scikit-learn TfidfVectorizer, we can reduce the vocabulary by filter‐
ing out words that appear not often enough or too frequently. To keep the dimensions
low, we choose a minimum of five documents in which words must appear, but not in
more than 70% of the documents. As we saw in Chapter 2, these parameters can be
optimized and require some experimentation.

In Gensim, this is implemented via a filter with the parameters no_below and
no_above (in scikit-learn, the analog would be min_df and max_df):

dict_gensim_para.filter_extremes(no_below=5, no_above=0.7)

With the dictionary read, we can now use Gensim to calculate the bag-of-words
matrix (which is called a corpus in Gensim, but we will stick with our current termi‐
nology):

bow_gensim_para = [dict_gensim_para.doc2bow(paragraph) \
                    for paragraph in gensim_paragraphs]

Finally, we can perform the TF-IDF transformation. The first line fits the bag-of-
words model, while the second line transforms the weights:
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from gensim.models import TfidfModel
tfidf_gensim_para = TfidfModel(bow_gensim_para)
vectors_gensim_para = tfidf_gensim_para[bow_gensim_para]

The vectors_gensim_para matrix is the one that we will use for all upcoming topic
modeling tasks with Gensim.

Blueprint: Performing Nonnegative Matrix Factorization
with Gensim
Let’s check first the results of NMF and see whether we can reproduce
those of scikit-learn:

from gensim.models.nmf import Nmf
nmf_gensim_para = Nmf(vectors_gensim_para, num_topics=10,
                      id2word=dict_gensim_para, kappa=0.1, eval_every=5)

The evaluation can take a while. Although Gensim offers a show_topics method for
directly displaying the topics, we have a different implementation to make it look like
the scikit-learn results so it’s easier to compare them:

display_topics_gensim(nmf_gensim_para)

Out:

Topic 00
nations (0.03)
united (0.02)
human (0.02)
rights (0.02)
role (0.01)

Topic 01
africa (0.02)
south (0.02)
people (0.02)
government (0.01)
republic (0.01)

Topic 02
economic (0.01)
development (0.01)
countries (0.01)
social (0.01)
international (0.01)

Topic 03
countries (0.02)
developing (0.02)
resources (0.01)
sea (0.01)
developed (0.01)

Topic 04
israel (0.02)
arab (0.02)
palestinian (0.02)
council (0.01)
security (0.01)

Topic 05
organization (0.02)
charter (0.02)
principles (0.02)
member (0.01)
respect (0.01)

Topic 06
problem (0.01)
solution (0.01)
east (0.01)
situation (0.01)
problems (0.01)

Topic 07
nuclear (0.02)
co (0.02)
operation (0.02)
disarmament (0.02)
weapons (0.02)

Topic 08
session (0.02)
general (0.02)
assembly (0.02)
mr (0.02)
president (0.02)

Topic 09
world (0.02)
peace (0.02)
peoples (0.02)
security (0.01)
states (0.01)

NMF is also a statistical method, so the results are not supposed to be identical to the
ones that we calculated with scikit-learn, but they are similar enough. Gensim has 
code for calculating the coherence score for topic models, a quality indicator. Let’s try
this:

from gensim.models.coherencemodel import CoherenceModel

nmf_gensim_para_coherence = CoherenceModel(model=nmf_gensim_para,
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                                           texts=gensim_paragraphs,
                                           dictionary=dict_gensim_para,
                                           coherence='c_v')
nmf_gensim_para_coherence_score = nmf_gensim_para_coherence.get_coherence()
print(nmf_gensim_para_coherence_score)

Out:

0.6500661701098243

The score varies with the number of topics. If you want to find the optimal number of
topics, a frequent approach is to run NMF for several different values, calculate the
coherence score, and take the number of topics that maximizes the score.

Let’s try the same with LDA and compare the quality indicators.

Blueprint: Using LDA with Gensim
Running LDA with Gensim is as easy as using NMF if we have the data
prepared. The LdaModel class has a lot of parameters for tuning the
model; we use the recommended values here:

from gensim.models import LdaModel
lda_gensim_para = LdaModel(corpus=bow_gensim_para, id2word=dict_gensim_para,
    chunksize=2000, alpha='auto', eta='auto', iterations=400, num_topics=10, 
    passes=20, eval_every=None, random_state=42)

We are interested in the word distribution of the topics:

display_topics_gensim(lda_gensim_para)

Out:

Topic 00
climate (0.12)
convention (0.03)
pacific (0.02)
environmental (0.02)
sea (0.02)

Topic 01
country (0.05)
people (0.05)
government (0.03)
national (0.02)
support (0.02)

Topic 02
nations (0.10)
united (0.10)
human (0.04)
security (0.03)
rights (0.03)

Topic 03
international (0.03)
community (0.01)
efforts (0.01)
new (0.01)
global (0.01)

Topic 04
africa (0.06)
african (0.06)
continent (0.02)
terrorist (0.02)
crimes (0.02)

Topic 05
world (0.05)
years (0.02)
today (0.02)
peace (0.01)
time (0.01)

Topic 06
peace (0.03)
conflict (0.02)
region (0.02)
people (0.02)
state (0.02)

Topic 07
south (0.10)
sudan (0.05)
china (0.04)
asia (0.04)
somalia (0.04)

Topic 08
general (0.10)
assembly (0.09)
session (0.05)
president (0.04)
secretary (0.04)

Topic 09
development (0.07)
countries (0.05)
economic (0.03)
sustainable (0.02)
2015 (0.02)
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The topics are not as easy to interpret as the ones generated by NMF. Checking the
coherence score as shown earlier, we find a lower score of 0.45270703180962374.
Gensim also allows us to calculate the perplexity score of an LDA model. Perplexity
measures how well a probability model predicts a sample. When we execute
lda_gensim_para.log_perplexity(vectors_gensim_para), we get a perplexity
score of -9.70558947109483.

Blueprint: Calculating Coherence Scores
Gensim can also calculate topic coherence. The method itself is a four-
stage process consisting of segmentation, probability estimation, a confir‐
mation measure calculation, and aggregation. Fortunately, Gensim has 

a CoherenceModel class that encapsulates all these single tasks, and we can directly
use it:

from gensim.models.coherencemodel import CoherenceModel

lda_gensim_para_coherence = CoherenceModel(model=lda_gensim_para,
    texts=gensim_paragraphs, dictionary=dict_gensim_para, coherence='c_v')
lda_gensim_para_coherence_score = lda_gensim_para_coherence.get_coherence()
print(lda_gensim_para_coherence_score)

Out:

0.5444930496493174

Substituting nmf for lda, we can calculate the same score for our NMF model:

nmf_gensim_para_coherence = CoherenceModel(model=nmf_gensim_para,
    texts=gensim_paragraphs, dictionary=dict_gensim_para, coherence='c_v')
nmf_gensim_para_coherence_score = nmf_gensim_para_coherence.get_coherence()
print(nmf_gensim_para_coherence_score)

Out:

0.6505110480127619

The score is quite a bit higher, which means that the NMF model is a better approxi‐
mation to the real topics compared to LDA.

Calculating the coherence score of the individual topics for LDA is even easier, as it is
directly supported by the LDA model. Let’s take a look at the average first:

top_topics = lda_gensim_para.top_topics(vectors_gensim_para, topn=5)
avg_topic_coherence = sum([t[1] for t in top_topics]) / len(top_topics)
print('Average topic coherence: %.4f.' % avg_topic_coherence)
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Out:

Average topic coherence: -2.4709.

We are also interested in the coherence scores of the individual topics, which is con‐
tained in top_topics. However, the output is verbose (check it!), so we try to con‐
dense it a bit by just printing the coherence scores together with the most important
words of the topics:

[(t[1], " ".join([w[1] for w in t[0]])) for t in top_topics]

Out:

[(-1.5361194241843663, 'general assembly session president secretary'),
 (-1.7014902754187737, 'nations united human security rights'),
 (-1.8485895463251694, 'country people government national support'),
 (-1.9729985026779555, 'peace conflict region people state'),
 (-1.9743434414778658, 'world years today peace time'),
 (-2.0202823396586433, 'international community efforts new global'),
 (-2.7269347656599225, 'development countries economic sustainable 2015'),
 (-2.9089975883502706, 'climate convention pacific environmental sea'),
 (-3.8680684770508753, 'africa african continent terrorist crimes'),
 (-4.1515707817343195, 'south sudan china asia somalia')]

Coherence scores for topic models can easily be calculated using Gensim. The abso‐
lute values are difficult to interpret, but varying the methods (NMF versus LDA) or
the number of topics can give you ideas about which way you want to proceed in
your topic models. Coherence scores and coherence models are a big advantage of
Gensim, as they are not (yet) included in scikit-learn.

As it’s difficult to estimate the “correct” number of topics, we are now taking a look at
an approach that creates hierarchical models and does not need a fixed number of
topics as a parameter.

Blueprint: Finding the Optimal Number of Topics
In the previous sections, we have always worked with 10 topics. So far we
have not compared the quality of this topic model to different ones with a
lower or higher number of topics. We want to find the optimal number

of topics in a structured way without having to go into the interpretation of each
constellation.

It turns out there is a way to achieve this. The “quality” of a topic model can be meas‐
ured by the previously introduced coherence score. To find the best coherence score,
we will now calculate it for a different number of topics with an LDA model. We will
try to find the highest score, which should give us the optimal number of topics:
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from gensim.models.ldamulticore import LdaMulticore
lda_para_model_n = []
for n in tqdm(range(5, 21)):
    lda_model = LdaMulticore(corpus=bow_gensim_para, id2word=dict_gensim_para,
                             chunksize=2000, eta='auto', iterations=400,
                             num_topics=n, passes=20, eval_every=None,
                             random_state=42)
    lda_coherence = CoherenceModel(model=lda_model, texts=gensim_paragraphs,
                                   dictionary=dict_gensim_para, coherence='c_v')
    lda_para_model_n.append((n, lda_model, lda_coherence.get_coherence()))

Coherence Calculations Take Time

Calculating the LDA model (and the coherence) is computationally
expensive, so in real life it would be better to optimize the algo‐
rithm to calculate only a minimal number of models and perplexi‐
ties. Sometimes it might make sense if you calculate the coherence
scores for only a few numbers of topics.

Now we can choose which number of topics produces a good coherence score. Note
that typically the score grows with the number of topics. Taking too many topics
makes interpretation difficult:

pd.DataFrame(lda_para_model_n, columns=["n", "model", \
    "coherence"]).set_index("n")[["coherence"]].plot(figsize=(16,9))

Out:

Using Gensim for Topic Modeling | 233



Overall, the graph grows with the number of topics, which is almost always the case.
However, we can see “spikes” at 13 and 17 topics, so these numbers look like good
choices. We will visualize the results for 17 topics:

display_topics_gensim(lda_para_model_n[12][1])

Out:

Topic 00
peace (0.02)
international
(0.02)
cooperation (0.01)
countries (0.01)
region (0.01)

Topic 01
general (0.05)
assembly (0.04)
session (0.03)
president (0.03)
mr (0.03)

Topic 02
united (0.04)
nations (0.04)
states (0.03)
european (0.02)
union (0.02)

Topic 03
nations (0.07)
united (0.07)
security (0.03)
council (0.02)
international
(0.02)

Topic 04
development
(0.03)
general (0.02)
conference (0.02)
assembly (0.02)
sustainable (0.01)

Topic 05
international
(0.03)
terrorism (0.03)
states (0.01)
iraq (0.01)
acts (0.01)

Topic 06
peace (0.03)
east (0.02)
middle (0.02)
israel (0.02)
solution (0.01)

Topic 07
africa (0.08)
south (0.05)
african (0.05)
namibia (0.02)
republic (0.01)

Topic 08
states (0.04)
small (0.04)
island (0.03)
sea (0.02)
pacific (0.02)

Topic 09
world (0.03)
international
(0.02)
problems (0.01)
war (0.01)
peace (0.01)

Topic 10
human (0.07)
rights (0.06)
law (0.02)
respect (0.02)
international
(0.01)

Topic 11
climate (0.03)
change (0.03)
global (0.02)
environment
(0.01)
energy (0.01)

Topic 12
world (0.03)
people (0.02)
future (0.01)
years (0.01)
today (0.01)

Topic 13
people (0.03)
independence
(0.02)
peoples (0.02)
struggle (0.01)
countries (0.01)

Topic 14
people (0.02)
country (0.02)
government (0.02)
humanitarian
(0.01)
refugees (0.01)

Topic 15
countries (0.05)
development
(0.03)
economic (0.03)
developing (0.02)
trade (0.01)

Topic 16
nuclear (0.06)
weapons (0.04)
disarmament
(0.03)
arms (0.03)
treaty (0.02)

Most of the topics are easy to interpret, but quite a few are difficult (like 0, 3, 8) as
they contain many words with small, but not too different, sizes. Is the topic model
with 17 topics therefore easier to explain? Not really. The coherence measure is
higher, but that does not necessarily mean a more obvious interpretation. In other
words, relying solely on coherence scores can be dangerous if the number of topics
gets too large. Although in theory higher coherence should contribute to better inter‐
pretability, it is often a trade-off, and choosing smaller numbers of topics can make
life easier. Taking a look back at the coherence graph, 10 seems to be a good value as it
is a local maximum of the coherence score.

As it’s obviously difficult to find the “correct” number of topics, we will now take a
look at an approach that creates hierarchical models and does not need a fixed num‐
ber of topics as a parameter.
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Blueprint: Creating a Hierarchical Dirichlet Process with
Gensim
Take a step back and recall the visualization of the topics in “Blueprint:
Using LDA with Gensim” on page 230. The sizes of the topics vary quite a

bit, and some topics have a large overlap. It would be nice if the results gave us
broader topics first and some subtopics below them. This is the exact idea of the hier‐
archical Dirichlet process (HDP). The hierarchical topic model should give us just a
few broad topics that are well separated, then go into more detail by adding more
words and getting more differentiated topic definitions.

HDP is still quite new and has not yet been extensively analyzed. Gensim is also often
used in research and has an experimental implementation of HDP integrated. As we 
can directly use our already existing vectorization, it’s not complicated to try it. Note
that we are again using the bag-of-words vectorization as the Dirichlet processes
themselves handle frequent words correctly:

from gensim.models import HdpModel
hdp_gensim_para = HdpModel(corpus=bow_gensim_para, id2word=dict_gensim_para)

HDP can estimate the number of topics and can show all that it identified:

hdp_gensim_para.print_topics(num_words=10)

Out:
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4 See, for example, Andrey A. Shabalin’s k-means clustering page or Naftali Harris’s “Visualizing K-Means Clus‐
tering”.

The results are sometimes difficult to understand. It can be an option to first perform
a “rough” topic modeling with only a few topics. If you find out that a topic is really
big or suspect that it might have subtopics, you can create a subset of the original cor‐
pus where the only documents included are those that have a significant mixture of
this topic. This needs some manual interaction but often yields much better results
compared to HDP. At this stage of development, we would not recommend using
HDP exclusively.

Topic models focus on uncovering the topic structure of a large corpus of documents.
As all documents are modeled as a mixture of different topics, they are not well-
suited for assigning documents to exactly one topic. This can be achieved using
clustering.

Blueprint: Using Clustering to Uncover the
Structure of Text Data
Apart from topic modeling, there is a multitude of other unsupervised

methods. Not all are suitable for text data, but many clustering algorithms can be
used. Compared to topic modeling, it is important for us to know that each document
(or paragraph) gets assigned to exactly one cluster.

Clustering Works Well for Mono-Typical Texts

In our case, it is a reasonable assumption that each document
belongs to exactly one cluster, as there are probably not too many
different things contained in one paragraph. For larger text frag‐
ments, we would rather use topic modeling to take possible mix‐
tures into account.

Most clustering methods need the number of clusters as a parameter, while there are
a few (like mean-shift) that can guess the correct number of clusters. Most of the lat‐
ter do not work well with sparse data and therefore are not suitable for text analytics.
In our case, we decided to use k-means clustering, but birch or spectral clustering
should work in a similar manner. There are a few nice explanations of how the k-
means algorithm works.4
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Clustering Is Much Slower Than Topic Modeling

For most algorithms, clustering takes considerable time, much
more than even LDA. So, be prepared to wait for roughly one hour
when executing the clustering in the next code fragment.

The scikit-learn API for clustering is similar to what we have seen with topic models:

from sklearn.cluster import KMeans
k_means_text = KMeans(n_clusters=10, random_state=42)
k_means_text.fit(tfidf_para_vectors)

KMeans(n_clusters=10, random_state=42)

But now it’s much easier to find out how many paragraphs belong to which cluster.
Everything necessary is in the labels_ field of the k_means_para object. For each
document, it contains the label that was assigned by the clustering algorithm:

np.unique(k_means_para.labels_, return_counts=True)

Out:

(array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9], dtype=int32),
array([133370,  41705,  12396,   9142,  12674,  21080,  19727,  10563,
         10437,  11116]))

In many cases, you might already have found some conceptual problems here. If the
data is too heterogeneous, most clusters tend to be small (containing a comparatively
small vocabulary) and are accompanied by a large cluster that absorbs all the rest.
Fortunately (and due to the short paragraphs), this is not the case here; cluster 0 is
much bigger than the others, but it’s not orders of magnitude. Let’s visualize the dis‐
tribution with the y-axis showing the size of the clusters (Figure 8-6):

sizes = []
for i in range(10):
    sizes.append({"cluster": i, "size": np.sum(k_means_para.labels_==i)})
pd.DataFrame(sizes).set_index("cluster").plot.bar(figsize=(16,9))

Visualizing the clusters works in a similar way to the topic models. However, we have
to calculate the individual feature contributions manually. For this, we add up the TF-
IDF vectors of all documents in the cluster and keep only the largest values.
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Figure 8-6. Visualization of the size of the clusters.

These are the weights for their corresponding words. In fact, that’s the only change
compared to the previous code:

def wordcloud_clusters(model, vectors, features, no_top_words=40):
    for cluster in np.unique(model.labels_):
        size = {}
        words = vectors[model.labels_ == cluster].sum(axis=0).A[0]
        largest = words.argsort()[::-1] # invert sort order
        for i in range(0, no_top_words):
            size[features[largest[i]]] = abs(words[largest[i]])
        wc = WordCloud(background_color="white", max_words=100,
                       width=960, height=540)
        wc.generate_from_frequencies(size)
        plt.figure(figsize=(12,12))
        plt.imshow(wc, interpolation='bilinear')
        plt.axis("off")
        # if you don't want to save the topic model, comment the next line
        plt.savefig(f'cluster{cluster}.png')

wordcloud_clusters(k_means_para, tfidf_para_vectors,
                   tfidf_para_vectorizer.get_feature_names())
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Out:
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As you can see, the results are (fortunately) not too different from the various topic
modeling approaches; you might recognize the topics of nuclear weapons, South
Africa, general assembly, etc. Note, however, that the clusters are more pronounced.
In other words, they have more specific words. Unfortunately, this is not true for the
biggest cluster, 1, which has no clear direction but many words with similar, smaller
sizes. This is a typical phenomenon of clustering algorithms compared to topic mod‐
eling.

Clustering calculations can take quite long, especially compared to NMF topic mod‐
els. On the positive side, we are now free to choose documents in a certain cluster
(opposed to a topic model, this is well-defined) and perform additional, more sophis‐
ticated operations, such as hierarchical clustering, etc.

The quality of the clustering can be calculated by using coherence or the Calinski-
Harabasz score. These metrics are not optimized for sparse data and take a long time
to calculate, and therefore we skip this here.

Further Ideas
In this chapter, we have shown different methods for performing topic modeling.
However, we have only scratched the surface of the possibilities:

• It’s possible to add n-grams in the vectorization process. In scikit-learn this is
straightforward by using the ngram_range parameter. Gensim has a special
Phrases class for that. Due to the higher TF-IDF weights of n-grams, they can
contribute considerably to the features of a topic and add a lot of context infor‐
mation.

• As we have used years to have time-dependent topic models, you could also use
countries or continents and find the topics that are most relevant in the speeches
of their ambassadors.

• Calculate the coherence score for an LDA topic model using the whole speeches
instead of the paragraphs and compare the scores.

Summary and Recommendation
In your daily work, it might turn out that unsupervised methods such as topic model‐
ing or clustering are often used as first methods to understand the content of
unknown text corpora. It is further useful to check whether the right features have
been chosen or this can still be optimized.

One of the most important decisions is the entity on which you will be calculating the
topics. As shown in our blueprint example, documents don’t always have to be the
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best choice, especially when they are quite long and consist of algorithmically deter‐
minable subentities.

Finding the correct number of topics is always a challenge. Normally, this must be
solved iteratively by calculating the quality indicators. A frequently used, more prag‐
matic approach is to try with a reasonable number of topics and find out whether the
results can be interpreted.

Using a (much) higher number of topics (like a few hundred), topic models are often
used as techniques for the dimensionality reduction of text documents. With the
resulting vectorizations, similarity scores can then be calculated in the latent space
and frequently yield better results compared to the naive distance in TF-IDF space.

Conclusion
Topic models are a powerful technique and are not computationally expensive.
Therefore, they can be used widely in text analytics. The first and foremost reason to
use them is uncovering the latent structure of a document corpus.

Topic models are also useful for getting a summarization and an idea about the struc‐
ture of large unknown texts. For this reason, they are often used routinely in the
beginning of an analysis.

As there is a large number of different algorithms and implementations, it makes
sense to experiment with the different methods and see which one yields the best
results for a given text corpus. The linear-algebra-based methods are quite fast and
make analyses possible by changing the number of topics combined with calculating
the respective quality indicators.

Aggregating data in different ways before performing topic modeling can lead to
interesting variations. As we have seen in the UN general debates dataset, paragraphs
were more suited as the speakers talked about one topic after the other. If you have a
corpus with texts from many authors, concatenating all texts per author will give you
persona models for different types of authors.
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CHAPTER 9

Text Summarization

There is a massive amount of information on the internet on every topic. A Google
search returns millions of search results containing text, images, videos, and so on.
Even if we consider only the text content, it’s not possible to read through it all. Text 
summarization methods are able to condense text information to a short summary of
a few lines or a paragraph and make it digestible to most users. Applications of text
summarization can be found not just on the internet but also in fields like paralegal
case summaries, book synopses, etc.

What You’ll Learn and What We’ll Build
In this chapter, we will start with an introduction to text summarization and provide
an overview of the methods used. We will analyze different types of text data and
their specific characteristics that are useful in determining the choice of summariza‐
tion method. We will provide blueprints that apply these methods to different use
cases and analyze their performance. At the end of this chapter, you will have a good
understanding of different text summarization methods and be able to choose the
right approach for any application.

Text Summarization
It is likely that you have undertaken a summarization task knowingly or unknowingly
at some point in life. Examples are telling a friend about a movie you watched last
night and trying to explain your work to your family. We all like to provide a brief
summary of our experiences to the rest of the world to share our feelings and moti‐
vate others. Text summarization is defined as the method used for generating a con‐
cise summary of longer text while still conveying useful information and without
losing the overall context. This is a method that we are quite familiar with: when
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reading course textbooks, lecture notes, or even this book, many students will try to
highlight important sentences or make short notes to capture the important concepts.
Automatic text summarization methods allow us to use computers to do this task.

Summarization methods can be broadly classified into extraction and abstraction
methods. In extractive summarization, important phrases or sentences are identified
in a given body of text and combined to form the summary of the entire text. Such
methods identify the important parts of text by assigning weights correctly, remove
sentences that might convey redundant information, rank different parts of the text,
and combine the most important ones as the summary. These methods select a part
of the original text as the summary, so while each sentence would be grammatically
accurate, it may not form a cohesive paragraph.

Abstractive summarization methods, on the other hand, try to paraphrase and gener‐
ate a summary just like a human would. This typically involves the use of deep neural
networks that are capable of generating phrases and sentences that provide a gram‐
matically accurate summary of the text and not just picking out important words or
sentences. However, the process of training deep neural networks requires a lot of
training data and addresses multiple subdomains within NLP, like natural language
generation, semantic segmentation, etc.

Abstractive summarization methods are an area of active research with several
approaches looking to improve the state of the art. The Transformers library from 
Hugging Face provides an implementation that uses a pre-trained model to perform
the summarization task. We explore the concept of pre-trained models and the Trans‐
formers library in more detail in Chapter 11. Extractive summarization is preferred
in many use cases because these methods are simple to implement and fast to run. In
this chapter, we will focus on blueprints using extractive summarization.

Let’s say you are working with a legal firm that wants to review historical cases to help
prepare for a current case. Since case proceedings and judgments are very long, they
want to generate summaries and review the entire case only if it’s relevant. Such a
summary helps them to quickly look at multiple cases and allocate their time effi‐
ciently. We can consider this an example of text summarization applied to long-form
text. Another use case might be a media company that wants to send a newsletter to
its subscribers every morning highlighting the important events of the previous day.
Customers don’t appreciate long emails, and therefore creating a short summary of
each article is important to keep them engaged. In this use case, you need to summa‐
rize shorter pieces of text. While working on these projects, maybe you have to work
in a team that uses a chat communication tool like Slack or Microsoft Teams. There
are shared chat groups (or channels) where all team members can communicate with
each other. If you are away for a few hours in a meeting, it can quickly get flooded
with multiple messages and discussions. As a user, it’s hard to go through 100+
unread messages, and you can’t be sure if you missed something important. In such a

244 | Chapter 9: Text Summarization

https://oreil.ly/DxXd1
https://oreil.ly/JS-x8


situation, it can be beneficial to have a way to summarize these missed discussions
with the help of an automated bot.

In each of the use cases, we see a different type of text that we are looking to summa‐
rize. Let’s briefly present them again:

• Long-form text written in a structured manner, containing paragraphs, and
spread across multiple pages. Examples include case proceedings, research
papers, textbooks, etc.

• Short-form text such as news articles, and blogs where images, data, and other
graphical elements might be present.

• Multiple, short pieces of text in the form of conversations that can contain special
characters such as emojis and are not very structured. Examples include Twitter
threads, online discussion forums, and group messaging applications.

Each of these types of text data presents information differently, and therefore the
method used to summarize one may not work for the other. In our blueprints we
present methods that work for these text types and provide guidance to determine the 
appropriate method.

Extractive Methods
All extractive methods follow these three basic steps:

1. Create an intermediate representation of the text.
2. Score the sentences/phrases based on the chosen representation.
3. Rank and choose sentences to create a summary of the text.

While most blueprints will follow these steps, the specific method that they use to
create the intermediate representation or score will vary.

Data Preprocessing
Before proceeding to the actual blueprint, we will reuse the blueprint from Chapter 3
to read a given URL that we would like to summarize. In this blueprint we will focus
on generating a summary using the text, but you can study Chapter 3 to get a detailed
overview of extracting data from a URL. The output of the article has been shortened
for brevity; to view the entire article, you can follow the URL:

import reprlib
r = reprlib.Repr()
r.maxstring = 800

url1 = "https://www.reuters.com/article/us-qualcomm-m-a-broadcom-5g/\
        what-is-5g-and-who-are-the-major-players-idUSKCN1GR1IN"
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article_name1 = download_article(url1)
article1 = parse_article(article_name1)
print ('Article Published on', r.repr(article1['time']))
print (r.repr(article1['text']))

Out:

Article Published on '2018-03-15T11:36:28+0000'
'LONDON/SAN FRANCISCO (Reuters) - U.S. President Donald Trump has blocked
microchip maker Broadcom Ltd’s (AVGO.O) $117 billion takeover of rival Qualcomm
(QCOM.O) amid concerns that it would give China the upper hand in the next
generation of mobile communications, or 5G. A 5G sign is seen at the Mobile
World Congress in Barcelona, Spain February 28, 2018. REUTERS/Yves HermanBelow
are some facts... 4G wireless and looks set to top the list of patent holders
heading into the 5G cycle. Huawei, Nokia, Ericsson and others are also vying to
amass 5G patents, which has helped spur complex cross-licensing agreements like
the deal struck late last year Nokia and Huawei around handsets. Editing by Kim
Miyoung in Singapore and Jason Neely in LondonOur Standards:The Thomson Reuters
Trust Principles.'

We make use of the reprlib package, which allows us to customize
the output of the print statement. In this case, printing the contents
of the full article would not make sense. We limit the size of the
output to 800 characters, and the reprlib package reformats the
output to show a selected sequence of words from the beginning
and end of the article.

Blueprint: Summarizing Text Using
Topic Representation
Let’s first try to summarize the example Reuters article ourselves. Having

read through it, we could provide the following manually generated summary:

5G is the next generation of wireless technology that will rely on denser arrays of
small antennas to offer data speeds up to 50 or 100 times faster than current 4G
networks. These new networks are supposed to deliver faster data not just to
phones and computers but to a whole array of sensors in cars, cargo, crop equip‐
ment, etc. Qualcomm is the dominant player in smartphone communications
chips today, and the concern is that a takeover by Singapore-based Broadcom
could see the firm cut research and development spending by Qualcomm or hive
off strategically important parts of the company to other buyers, including in
China. This risked weakening Qualcomm, which would boost China over the
United States in the 5G race.
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As humans, we understand what the article is conveying and then generate a sum‐
mary of our understanding. However, an algorithm doesn’t have this understanding
and therefore has to rely on the identification of important topics to determine
whether a sentence should be included in the summary. In the example article, topics
could be broad themes like technology, telecommunications, and 5G, but to an algo‐
rithm this is nothing but a collection of important words. Our first method tries to
distinguish between important and not-so-important words that allows us to then
give a higher rank to sentences that contain important words.

Identifying Important Words with TF-IDF Values
The simplest approach would be to identify important sentences based on an aggre‐
gate of the TF-IDF values of the words in that sentence. A detailed explanation of TF-
IDF is provided in Chapter 5, but for this blueprint, we apply the TF-IDF
vectorization and then aggregate the values to a sentence level. We can generate a
score for each sentence as a sum of the TF-IDF values for each word in that sentence.
This would mean that a sentence with a high score contains many important words as
compared to other sentences in the article:

from sklearn.feature_extraction.text import TfidfVectorizer
from nltk import tokenize

sentences = tokenize.sent_tokenize(article1['text'])
tfidfVectorizer = TfidfVectorizer()
words_tfidf = tfidfVectorizer.fit_transform(sentences)

In this case, there are approximately 20 sentences in the article, and we chose to cre‐
ate a condensed summary that is only 10% of the size of the original article (approxi‐
mately two to three sentences). We sum up the TF-IDF values for each sentence and
use np.argsort to sort them. This method sorts the indices of each sentence in
ascending order, and we reverse the returned indices using [::-1]. To ensure the
same flow of thoughts as presented in the article, we print the chosen summarized
sentences in the same order in which they appear. We can see the results of our gener‐
ated summary, as shown here:

# Parameter to specify number of summary sentences required
num_summary_sentence = 3

# Sort the sentences in descending order by the sum of TF-IDF values
sent_sum = words_tfidf.sum(axis=1)
important_sent = np.argsort(sent_sum, axis=0)[::-1]

# Print three most important sentences in the order they appear in the article
for i in range(0, len(sentences)):
    if i in important_sent[:num_summary_sentence]:
        print (sentences[i])
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Out:

LONDON/SAN FRANCISCO (Reuters) - U.S. President Donald Trump has blocked
microchip maker Broadcom Ltd’s (AVGO.O) $117 billion takeover of rival Qualcomm
(QCOM.O) amid concerns that it would give China the upper hand in the next
generation of mobile communications, or 5G.
5G networks, now in the final testing stage, will rely on denser arrays of
small antennas and the cloud to offer data speeds up to 50 or 100 times faster
than current 4G networks and serve as critical infrastructure for a range of
industries.
The concern is that a takeover by Singapore-based Broadcom could see the firm
cut research and development spending by Qualcomm or hive off strategically
important parts of the company to other buyers, including in China, U.S.
officials and analysts have said.

In this method, we create an intermediate representation of the text using TF-IDF
values, score the sentences based on this, and pick three sentences with the highest
score. The sentences selected using this method agree with the manual summary we
wrote earlier and capture the main points covered by the article. Some nuances like
the importance of Qualcomm in the industry and the specific applications of 5G
technology are missing. But this method serves as a good blueprint to quickly identify
important sentences and automatically generate the summary for news articles. We 
wrap this blueprint into a function tfidf_summary that is defined in the accompany‐
ing notebook and reused later in the chapter.

LSA Algorithm
One of the modern methods used in extractive-based summarization is latent seman‐
tic analysis (LSA). LSA is a general-purpose method that is used for topic modeling,
document similarity, and other tasks. LSA assumes that words that are close in mean‐
ing will occur in the same documents. In the LSA algorithm, we first represent the
entire article in the form of a sentence-term matrix. The concept of a document-term
matrix has been introduced in Chapter 8, and we can adapt the concept to fit a
sentence-term matrix. Each row represents a sentence, and each column represents a
word. The value of each cell in this matrix is the word frequency often scaled as TF-
IDF weights. The objective of this method is to reduce all the words to a few topics by
creating a modified representation of the sentence-term matrix. To create the modi‐
fied representation, we apply the method of nonnegative matrix factorization that
expresses this matrix as the product of two new decomposed matrices that have fewer
rows/columns. You can refer to Chapter 8 for a more detailed understanding of this
method. After the matrix decomposition step, we can generate the summary by
choosing the top N important topics and then picking the most important sentences
for each of these topics to form our summary.

Instead of applying LSA from scratch, we make use of the package sumy, which can be
installed using the command pip install sumy. It provides multiple summarization
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1 You can find more information about the package, including the usage guidelines that we used while design‐
ing this blueprint on GitHub.

methods within the same library. This library uses an integrated stop words list along
with the tokenizer and stemmer functionality from NLTK but makes this configura‐
ble. In addition, it is also able to read input from plain text, HTML, and files. This
gives us the ability to quickly test different summarization methods and change the
default configurations to suit specific use cases. For now, we will go with the default
options, including identifying the top three sentences:1

from sumy.parsers.plaintext import PlaintextParser
from sumy.nlp.tokenizers import Tokenizer
from sumy.nlp.stemmers import Stemmer
from sumy.utils import get_stop_words

from sumy.summarizers.lsa import LsaSummarizer

LANGUAGE = "english"
stemmer = Stemmer(LANGUAGE)

parser = PlaintextParser.from_string(article1['text'], Tokenizer(LANGUAGE))
summarizer = LsaSummarizer(stemmer)
summarizer.stop_words = get_stop_words(LANGUAGE)

for sentence in summarizer(parser.document, num_summary_sentence):
    print (str(sentence))

Out:

LONDON/SAN FRANCISCO (Reuters) - U.S. President Donald Trump has blocked
microchip maker Broadcom Ltd’s (AVGO.O) $117 billion takeover of rival Qualcomm
(QCOM.O) amid concerns that it would give China the upper hand in the next
generation of mobile communications, or 5G.
Moving to new networks promises to enable new mobile services and even whole
new business models, but could pose challenges for countries and industries
unprepared to invest in the transition.
The concern is that a takeover by Singapore-based Broadcom could see the firm
cut research and development spending by Qualcomm or hive off strategically
important parts of the company to other buyers, including in China, U.S.
officials and analysts have said.

By analyzing the results, we see that there is a difference in only one sentence from
the results of the TF-IDF, and that is sentence 2. While the LSA method chose to
highlight a sentence that captures the topic about challenges, the TF-IDF method
chose a sentence that provides more information about 5G. In this scenario, the sum‐
maries generated by the two methods are not very different, but let’s analyze how this
method works on a longer article.
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We wrap this blueprint into a function lsa_summary, which is defined in the accom‐
panying notebook and can be reused:

r.maxstring = 800
url2 = "https://www.reuters.com/article/us-usa-economy-watchlist-graphic/\
        predicting-the-next-u-s-recession-idUSKCN1V31JE"
article_name2 = download_article(url2)
article2 = parse_article(article_name2)
print ('Article Published', r.repr(article1['time']))
print (r.repr(article2['text']))

Out:

Article Published '2018-03-15T11:36:28+0000'
'NEW YORK A protracted trade war between China and the United States, the
world’s largest economies, and a deteriorating global growth outlook has left
investors apprehensive about the end to the longest expansion in American
history. FILE PHOTO: Ships and shipping containers are pictured at the port of
Long Beach in Long Beach, California, U.S., January 30, 2019.   REUTERS/Mike
BlakeThe recent ...hton wrote in the June Cass Freight Index report.  12.
MISERY INDEX The so-called Misery Index adds together the unemployment rate and
the inflation rate. It typically rises during recessions and sometimes prior to
downturns. It has slipped lower in 2019 and does not look very miserable.
Reporting by Saqib Iqbal Ahmed; Editing by Chizu NomiyamaOur Standards:The
Thomson Reuters Trust Principles.'

Then:
summary_sentence = tfidf_summary(article2['text'], num_summary_sentence)
for sentence in summary_sentence:
    print (sentence)

Out:

REUTERS/Mike BlakeThe recent rise in U.S.-China trade war tensions has brought
forward the next U.S. recession, according to a majority of economists polled
by Reuters who now expect the Federal Reserve to cut rates again in September
and once more next year.
On Tuesday, U.S. stocks jumped sharply higher and safe-havens like the Japanese
yen and Gold retreated after the U.S. Trade Representative said additional
tariffs on some Chinese goods, including cell phones and laptops, will be
delayed to Dec. 15.
ISM said its index of national factory activity slipped to 51.2 last month, the
lowest reading since August 2016, as U.S. manufacturing activity slowed to a
near three-year low in July and hiring at factories shifted into lower gear,
suggesting a further loss of momentum in economic growth early in the third
quarter.

And finally:
summary_sentence = lsa_summary(article2['text'], num_summary_sentence)
for sentence in summary_sentence:
    print (sentence)
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Out:

NEW YORK A protracted trade war between China and the United States, the
world’s largest economies, and a deteriorating global growth outlook has left
investors apprehensive about the end to the longest expansion in American
history.
REUTERS/Mike BlakeThe recent rise in U.S.-China trade war tensions has brought
forward the next U.S. recession, according to a majority of economists polled
by Reuters who now expect the Federal Reserve to cut rates again in September
and once more next year.
Trade tensions have pulled corporate confidence and global growth to multi-year
lows and U.S. President Donald Trump’s announcement of more tariffs have raised
downside risks significantly, Morgan Stanley analysts said in a recent note.

The difference in the chosen summarized sentences becomes more evident here. The
main topic of the trade war tensions is captured by both methods, but the LSA sum‐
marizer also highlights important topics such as the apprehensiveness of investors
and corporate confidence. While the TF-IDF tries to express the same idea in its
chosen sentences, it does not pick the right sentences and therefore fails to convey the
idea. There are other topic-based summarization methods, but we have chosen to
highlight LSA as a simple and widely used method.

It’s interesting to note that the sumy library also provides the imple‐
mentation of one of the oldest methods for automatic text summa‐
rization (LuhnSummarizer), which was created by Hans Peter Luhn
in 1958. This method is also based on topic representation by iden‐
tifying important words using their counts and setting thresholds
to get rid of extremely frequent and infrequent words. You can use
this as a baseline method for your summarization experiments and
compare improvements provided by other methods.

Blueprint: Summarizing Text Using an Indicator
Representation
Indicator representation methods aim to create the intermediate represen‐

tation of a sentence by using features of the sentence and its relationship to others in
the document rather than using only the words in the sentence. TextRank is one of
the most popular examples of an indicator-based method. TextRank is inspired by
PageRank, a “graph-based ranking algorithm that was originally used by Google to
rank search results. As per the authors of the TextRank paper, graph-based algorithms
rely on the collective knowledge of web architects rather than individual content
analysis of web pages,” which leads to improved performance. Applied to our context,
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we will rely on the features of a sentence and the linkages between them rather than
on topics contained in each sentence.

We will first try to understand how the PageRank algorithm works and then adapt
the methodology to the text summarization problem. Let’s consider a list of web
pages—(A, B, C, D, E, and F) and their links to one another. In Figure 9-1, page A
contains a link to page D. Page B contains links to A and D and so on. We can also
represent this in the form of a matrix with rows referring to each page and with col‐
umns referring to incoming links from other pages. The matrix shown in the figure
represents our graph with rows representing each node, columns referring to incom‐
ing links from other nodes, and the value of the cell representing the weight of the
edge between them. We start with a simple representation (1 indicates an incoming
link, 0 indicates none). We can then normalize these values by dividing by the total
number of outgoing links for each web page. For example, page C has two outgoing
links (to pages E and F), and therefore the value of each outgoing link is 0.5.

Figure 9-1. Web page links and corresponding PageRank matrix.

The PageRank for a given page is a weighted sum of the PageRank for all other pages
that have a link to it. This also means that calculating the PageRank is an iterative
function where we must start with some assumed values of PageRank for each page.
If we assume all initial values to be 1 and multiply the matrices as shown in
Figure 9-2, we arrive at the PageRank for each page after one iteration (not taking
into consideration the damping factor for this illustration).

The research paper by Brin and Page showed that after repeating this calculation for
many iterations the values stabilize, and hence we get the PageRank or importance
for each page. TextRank adapts the previous approach by considering each sentence
in the text to be analogous to a page and therefore a node in the graph. The weight of
the edges between nodes is determined by the similarity between sentences, and the
authors of TextRank suggest a simple approach by counting the number of shared
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lexical tokens, normalized by the size of both sentences. There are other similarity
measures such as cosine distance and longest common substring that can also be
used.

Figure 9-2. Application of one iteration of PageRank algorithm.

Since the sumy package also provides a TextRank implementation, we will use it to
generate the summarized sentences for the article on the US recession that we saw
previously:

from sumy.summarizers.text_rank import TextRankSummarizer

parser = PlaintextParser.from_string(article2['text'], Tokenizer(LANGUAGE))
summarizer = TextRankSummarizer(stemmer)
summarizer.stop_words = get_stop_words(LANGUAGE)

for sentence in summarizer(parser.document, num_summary_sentence):
    print (str(sentence))

REUTERS/Mike BlakeThe recent rise in U.S.-China trade war tensions has brought
forward the next U.S. recession, according to a majority of economists polled
by Reuters who now expect the Federal Reserve to cut rates again in September
and once more next year.
As recession signals go, this so-called inversion in the yield curve has a
solid track record as a predictor of recessions.
Markets turned down before the 2001 recession and tumbled at the start of the
2008 recession.

While one of the summarized sentences remains the same, this method has chosen to
return two other sentences that are probably linked to the main conclusions drawn in
this article. While these sentences themselves may not seem important, the use of a
graph-based method resulted in selecting highly linked sentences that support the
main theme of the article. We wrap this blueprint as a function textrank_summary,
allowing us to reuse it.
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We also want to see how this method works on the shorter article on 5G technology
that we looked at previously:

parser = PlaintextParser.from_string(article1['text'], Tokenizer(LANGUAGE))
summarizer = TextRankSummarizer(stemmer)
summarizer.stop_words = get_stop_words(LANGUAGE)

for sentence in summarizer(parser.document, num_summary_sentence):
    print (str(sentence))

Out:

Acquiring Qualcomm would represent the jewel in the crown of Broadcom’s
portfolio of communications chips, which supply wi-fi, power management, video
and other features in smartphones alongside Qualcomm’s core baseband chips -
radio modems that wirelessly connect phones to networks.
Qualcomm (QCOM.O) is the dominant player in smartphone communications chips,
making half of all core baseband radio chips in smartphones.
Slideshow (2 Images)The standards are set by a global body to ensure all phones
work across different mobile networks, and whoever’s essential patents end up
making it into the standard stands to reap huge royalty licensing revenue
streams.

We see that the results capture the central idea of the Qualcomm acquisition but do
not contain any mention of 5G as a technology that was selected by the LSA method.
TextRank generally works better in the case of longer text content as it is able to iden‐
tify the most important sentences using the graph linkages. In the case of shorter text
content, the graphs are not very large, and therefore the wisdom of the network plays
a smaller role. Let’s use an example of even longer content from Wikipedia to high‐
light this point further. We will reuse the blueprint from Chapter 2 to download the
text content of a Wikipedia article. In this case, we choose an article that describes a
historical event or series of events: the Mongol invasion of Europe. And since this is
much longer text, we choose to summarize about 10 sentences to provide a better
summary:

p_wiki = wiki_wiki.page('Mongol_invasion_of_Europe')
print (r.repr(p_wiki.text))

Out:

'The Mongol invasion of Europe in the 13th century occurred from the 1220s into
the 1240s. In Eastern Europe, the Mongols destroyed Volga Bulgaria, Cumania,
Alania, and the Kievan Rus\' federation. In Central Europe, the Mongol armies
launched a tw...tnotes\nReferences\nSverdrup, Carl (2010). "Numbers in Mongol
Warfare". Journal of Medieval Military History. Boydell Press. 8: 109–17 [p.
115]. ISBN 978-1-84383-596-7.\n\nFurther reading\nExternal links\nThe Islamic
World to 1600: The Golden Horde'

Then:
r.maxstring = 200

num_summary_sentence = 10
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summary_sentence = textrank_summary(p_wiki.text, num_summary_sentence)

for sentence in summary_sentence:
    print (sentence)

We illustrate the results as highlighted sentences in the original Wikipedia page
(Figure 9-3) to show that using the TextRank algorithm provides an almost accurate
summarization of the article by picking the most important sentences from each sec‐
tion of the article. We can compare how this works with an LSA method, but we leave
this as an exercise to the reader using the previous blueprint. Based on our experien‐
ces, when we want to summarize a large piece of text content, for example, scientific
research papers, collection of writings, and speeches by world leaders or multiple web
pages, then we would choose a graph-based method like TextRank.

Figure 9-3. Wikipedia page with selected summary sentences highlighted.

Measuring the Performance of Text Summarization
Methods
In the blueprints so far, we have seen many methods that produce summaries of some
given text. Each summary differs from the other in subtle ways, and we have to rely
on our subjective evaluation. This is certainly a challenge in selecting a method that
works best for a given use case. In this section, we will introduce commonly used
accuracy metrics and show how they can be used to empirically select the best
method for summarization.

We must understand that to automatically evaluate the summary of some given text,
there must be a reference summary that it can be compared with. Typically, this is a
summary written by a human and is referred to as the gold standard. Every automati‐
cally generated summary can be compared with the gold standard to get an accuracy
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measure. This also gives us the opportunity to easily compare multiple methods and
choose the best one. However, we will often run into the issue that a human-
generated summary may not exist for every use case. In such situations, we can
choose a proxy measure to be considered as the gold standard. An example in the
case of a news article would be the headline. While it is written by a human, it is a
poor proxy as it can be quite short and is not an accurate summary but more of a
leading statement to draw users. While this may not give us the best results, it is still
useful to compare the performance of different summarization methods.

Recall-Oriented Understudy for Gisting Evaluation (ROUGE) is one of the most com‐
monly used methods to measure the accuracy of a summary. There are several types
of ROUGE metrics, but the basic idea is simple. It arrives at the measure of accuracy
by comparing the number of shared terms between the automatically generated sum‐
mary and the gold standard. ROUGE-N is a metric that measures the number of
common n-grams (ROUGE-1 compares individual words, ROUGE-2 compares
bigrams, and so on).

The original ROUGE paper compared how many of the words that appear in the gold
standard also appear in the automatically generated summary. This is what we intro‐
duced in Chapter 6 as recall. So if most of the words present in the gold standard were
also present in the generated summary, we would achieve a high score. However, this
metric alone does not tell the whole story. Consider that we generate a verbose sum‐
mary that is long but includes most of the words in the gold standard. This summary
would have a high score, but it would not be a good summary since it doesn’t provide
a concise representation. This is why the ROUGE measure has been extended to
compare the number of shared words to the total number of words in the generated
summary as well. This indicates the precision: the number of words in the generated
summary that are actually useful. We can combine these measures to generate the F-
score.

Let’s see an example of ROUGE for one of our generated summaries. Since we do not
have a gold standard human-generated summary, we use the headline of the article as
a proxy for the gold standard. While it is simple to calculate this independently, we
make use of the Python package called rouge_scorer to make our life easier. This
package implements all the ROUGE measures that we will use later, and it can be
installed by executing the command pip install rouge_scorer. We make use of a
print utility function print_rouge_score to present a concise view of the scores:

num_summary_sentence = 3
gold_standard = article2['headline']
summary = ""

summary = ''.join(textrank_summary(article2['text'], num_summary_sentence))
scorer = rouge_scorer.RougeScorer(['rouge1'], use_stemmer=True)
scores = scorer.score(gold_standard, summary)
print_rouge_score(scores)
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Out:

rouge1 Precision: 0.06 Recall: 0.83 fmeasure: 0.11

The previous result shows us that the summary generated by TextRank has a high
recall but low precision. This is an artifact of our gold standard being an extremely
short headline, which is itself not the best choice but used here for illustration. The
most important use of our metric is a comparison with another summarization
method, and in this case, let’s compare this with the LSA-generated summary:

summary = ''.join(lsa_summary(article2['text'], num_summary_sentence))
scores = scorer.score(gold_standard, summary)
print_rouge_score(scores)

Out:

rouge1 Precision: 0.04 Recall: 0.83 fmeasure: 0.08

The above result shows us that TextRank was the superior method in this case
because it had a higher precision, while the recall of both methods was the same. We
can easily extend ROUGE-1 to ROUGE-2, which would compare the number of
common sequences of two words (bigrams). Another important metric is ROUGE-L,
which measures the number of common sequences between the reference summary
and the generated summary by identifying the longest common subsequences. A sub‐
sequence of a sentence is a new sentence that can be generated from the original sen‐
tence with some words deleted without changing the relative order of the remaining
words. The advantage of this metric is that it does not focus on exact sequence
matches but in-sequence matches that reflect sentence-level word order. Let’s analyze
the ROUGE-2 and ROUGE-L metrics for the Wikipedia page. Again, we do not have
a gold standard, and therefore we will use the introductory paragraph as the proxy for
our gold standard:

num_summary_sentence = 10
gold_standard = p_wiki.summary

summary = ''.join(textrank_summary(p_wiki.text, num_summary_sentence))

scorer = rouge_scorer.RougeScorer(['rouge2','rougeL'], use_stemmer=True)
scores = scorer.score(gold_standard, summary)
print_rouge_score(scores)

Out:

rouge2 Precision: 0.18 Recall: 0.46 fmeasure: 0.26
rougeL Precision: 0.16 Recall: 0.40 fmeasure: 0.23

Then:
summary = ''.join(lsa_summary(p_wiki.text, num_summary_sentence))

scorer = rouge_scorer.RougeScorer(['rouge2','rougeL'], use_stemmer=True)
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2 Sansiri Tarnpradab, et al. “Toward Extractive Summarization of Online ForumDiscussions via Hierarchical
Attention Networks.” https://arxiv.org/abs/1805.10390. See the data set (.zip) as well.

scores = scorer.score(gold_standard, summary)
print_rouge_score(scores)

Out:

rouge2 Precision: 0.04 Recall: 0.08 fmeasure: 0.05
rougeL Precision: 0.12 Recall: 0.25 fmeasure: 0.16

Based on the results, we see that TextRank proves to be more accurate than LSA. We
can use the same method as shown earlier to see which method works best for shorter
Wikipedia entries, which we will leave as an exercise for the reader. When applying
this to your use case, it is important that you choose the right summary for compari‐
son. For instance, when working with news articles, instead of using the headline, you
could look for a summary section contained within the article or generate one your‐
self for a small number of articles. This would allow you to have a fair comparison 
between different methods.

Blueprint: Summarizing Text Using
Machine Learning
Many of you might have participated in online discussion forums for top‐

ics such as travel planning, programming, etc. Users on these platforms communicate
in the form of threads. Anybody can start a thread, and other members provide their
responses on this thread. Threads can become long, and the key message might be
lost. In this blueprint, we will use data extracted from a travel forum used in the
research paper,2 which contains the text for all posts in a thread along with the sum‐
mary for that thread, as shown in Figure 9-4.

In this blueprint, we are going to use machine learning to help us automatically iden‐
tify the most important posts across the entire thread that accurately summarize it.
We will first use the summary by the annotator to create target labels for our dataset.
We will then generate features that can be useful to determine whether a particular
post should be in the summary and finally train a model and evaluate the accuracy.
The task at hand is similar to text classification but performed at a post level.

While the forum threads are used to illustrate this blueprint, it can easily be used for
other use-cases. For example, consider the CNN and Daily Mail news summarization
task, DUC, or SUMMAC datasets. In each of these datasets, you will find the text of
each article and the highlighted summary sentences. These are analogous to the text
of each thread and the summary as presented in this blueprint.
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Figure 9-4. Posts in a thread and the corresponding summary from a travel forum.

Step 1: Creating Target Labels
The first step is to load the dataset, understand its structure, and create target labels
using the provided summary. We have performed the initial data preparation steps to
create a well-formatted DataFrame, shown next. Please refer to the Data_Preparation
notebook in the GitHub repo of the book for a detailed look at the steps:

import pandas as pd
import numpy as np

df = pd.read_csv('travel_threads.csv', sep='|', dtype={'ThreadID': 'object'})
df[df['ThreadID']=='60763_5_3122150'].head(1).T

 170

Date 29 September 2009, 1:41

Filename thread41_system20

ThreadID 60763_5_3122150

Title which attractions need to be pre booked?

postNum 1

text Hi I am coming to NY in Oct! So excited&quot; Have wanted to visit for years. We are planning on doing all the
usual stuff so wont list it all but wondered which attractions should be pre booked and which can you just turn
up at> I am plannin on booking ESB but what else? thanks x
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userID musicqueenLon...

summary A woman was planning to travel NYC in October and needed some suggestions about attractions in the NYC. She
was planning on booking ESB.Someone suggested that the TOTR was much better compared to ESB. The other
suggestion was to prebook the show to avoid wasting time in line.Someone also suggested her New York Party
Shuttle tours.

Each row in this dataset refers to a post in a thread. Each thread is identified by a
unique ThreadID, and it’s possible that multiple rows in the DataFrame have the same
ThreadID. The column Title refers to the name with which the user started the
thread. The content of each post is in the text column, along with additional details
like the name of the user who created the post (userID), the time when the post was
created (Date), and its position in the thread (postNum). For this dataset, human-
generated summaries for each thread are provided in the summary column.

We will reuse the regular expression cleaning and spaCy pipeline blueprints from
Chapter 4 to remove special formatting, URLs, and other punctuation from the posts.
We will also generate the lemmatized representation of the text, which we will use for
prediction. You can find the function definitions in the accompanying notebook for
this chapter. Since we are making use of the spaCy lemmatization function, it might
take a couple of minutes to complete execution:

# Applying regex based cleaning function
df['text'] = df['text'].apply(regex_clean)
# Extracting lemmas using spacy pipeline
df['lemmas'] = df['text'].apply(clean)

Each observation in our dataset contains a post that is part of a thread. If we were to
apply a train-test split at this level, it is possible that two posts belonging to the same
thread would end up in the train and test datasets, which would lead to inaccurate
training. As a result, we use GroupShuffleSplit to group all posts into their respec‐
tive threads and then randomly select 80% of the threads to create the training data‐
set, with the rest of the threads forming part of the test dataset. This function ensures
that posts belonging to the same thread are part of the same dataset. The GroupShuf
fleSplit function does not actually split the data but provides a set of indices that
split the data identified by train_split and test_split. We use these indices to cre‐
ate the two datasets:

from sklearn.model_selection import GroupShuffleSplit

gss = GroupShuffleSplit(n_splits=1, test_size=0.2)
train_split, test_split = next(gss.split(df, groups=df['ThreadID']))

train_df = df.iloc[train_split]
test_df = df.iloc[test_split]
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print ('Number of threads for Training ', train_df['ThreadID'].nunique())
print ('Number of threads for Testing ', test_df['ThreadID'].nunique())

Out:

Number of threads for Training  559
Number of threads for Testing  140

Our next step is to determine the target label for each of our posts. The target label
defines whether a particular post should be included in the summary. We determine
this by comparing each post to the annotator summary and picking posts that are
most similar to be included in the summary. There are several metrics that can be
used to determine the similarity of two sentences, but in our use case we are working
with short texts and therefore choose the Jaro-Winkler distance. We use the textdis
tance package that also provides implementations of other distance metrics. This can
be easily installed using the command pip install textdistance. You can also
easily modify the blueprint and choose a metric based on your use case.

In the following step, we determine the similarity and rank all the posts within a
thread based on the chosen metric. We then create our target label named summary
Post that contains a True or False value indicating whether this post is part of the
summary. This is based on the rank of the post and the compression factor. We
choose a compression factor of 30%, which means that we pick the top 30% of all
posts ordered by their similarity to be included in the summary:

import textdistance

compression_factor = 0.3

train_df['similarity'] = train_df.apply(
    lambda x: textdistance.jaro_winkler(x.text, x.summary), axis=1)
train_df["rank"] = train_df.groupby("ThreadID")["similarity"].rank(
    "max", ascending=False)

topN = lambda x: x <= np.ceil(compression_factor * x.max())
train_df['summaryPost'] = train_df.groupby('ThreadID')['rank'].apply(topN)

train_df[['text','summaryPost']][train_df['ThreadID']=='60763_5_3122150'].head(3)

Out:

 text summaryPost

170 Hi I am coming to NY in Oct! So excited” Have wanted to visit for years. We are planning on doing all
the usual stuff so wont list it all but wondered which attractions should be pre booked and which can
you just turn up at> I am plannin on booking ESB but what else? thanks x

True

171 I wouldnt bother doing the ESB if I was you TOTR is much better. What other attractions do you have
in mind?

False
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 text summaryPost

172 The Statue of Liberty, if you plan on going to the statue itself or to Ellis Island (as opposed to taking a
boat past): http://www.statuecruises.com/ Also, we prefer to book shows and plays in advance rather
than trying for the same-day tickets, as that allows us to avoid wasting time in line. If that sounds
appealing to you, have a look at http://www.broadwaybox.com/

True

As you can see in the previous results for a given thread, the first and third posts are
tagged as summaryPost, but the second post is not considered important and would
not be included in the summary. Because of the way we defined our target label, it is
possible in rare situations that very short posts are also included in the summary.
This might happen when a short post contains the same words as the thread title.
This is not useful to the summary, and we correct this by setting all posts containing
20 words or less to not be included in the summary:

train_df.loc[train_df['text'].str.len() <= 20, 'summaryPost'] = False

Step 2: Adding Features to Assist Model Prediction
Since we are dealing with forum threads in this blueprint, there are some additional 
features that we can generate to help our model in the prediction. The title of the
thread conveys the topic succinctly and can be helpful in identifying which post
should actually be selected in the summary. We cannot directly include the title as a
feature since it would be the same for each post in the thread, but instead we calculate
the similarity between the post and the title as one of the features:

train_df['titleSimilarity'] = train_df.apply(
    lambda x: textdistance.jaro_winkler(x.text, x.Title), axis=1)

Another useful feature could be the length of the post. Short posts could be asking
clarifying questions and would not capture the most useful knowledge of the thread.
Longer posts could indicate that a lot of useful information is being shared. The posi‐
tion of where the post appears in the thread could also be a useful indicator of
whether it should be in the summary. This might vary depending on the way in
which the forum threads are organized. In the case of the travel forum, the posts are
chronologically ordered, and the occurrence of the post is given by the column post
Num, which we can readily use as a feature:

# Adding post length as a feature
train_df['textLength'] = train_df['text'].str.len()

As a final step, let’s create the vectorized representation of the lemmas that we extrac‐
ted earlier using the TfidfVectorizer. We then create a new DataFrame, train_df_tf,
which contains the vectorized lemmas and the additional features that we created
earlier:

262 | Chapter 9: Text Summarization



feature_cols = ['titleSimilarity','textLength','postNum']

train_df['combined'] = [
    ' '.join(map(str, l)) for l in train_df['lemmas'] if l is not '']
tfidf = TfidfVectorizer(min_df=10, ngram_range=(1, 2), stop_words="english")
tfidf_result = tfidf.fit_transform(train_df['combined']).toarray()

tfidf_df = pd.DataFrame(tfidf_result, columns=tfidf.get_feature_names())
tfidf_df.columns = ["word_" + str(x) for x in tfidf_df.columns]
tfidf_df.index = train_df.index
train_df_tf = pd.concat([train_df[feature_cols], tfidf_df], axis=1)

This step of adding features can be extended or customized depending on the use
case. For example, if we are looking to summarize longer text, then the paragraph
that a sentence belongs to will be important. Normally, each paragraph or section
tries to capture an idea, and sentence similarity metrics at that level would be rele‐
vant. If we are looking at generating summaries of scientific papers, then the number
of citations and the sentences used for those citations have proven to be useful. We
must also repeat the same feature engineering steps on the test dataset, which we
show in the accompanying notebook but exclude here.

Step 3: Build a Machine Learning Model
Now that we’ve generated features, we will reuse the text classification blueprint from
Chapter 6 but use a RandomForestClassifier model instead of the SVM model.
While building a machine learning model for summarization, we might have addi‐
tional features other than the vectorized text representation. Particularly in situations
where a combination of numeric and categorical features are present, a tree-based
classifier might perform better:

from sklearn.ensemble import RandomForestClassifier

model1 = RandomForestClassifier()
model1.fit(train_df_tf, train_df['summaryPost'])

Out:

RandomForestClassifier(bootstrap=True, ccp_alpha=0.0, class_weight=None,
                       criterion='gini', max_depth=None, max_features='auto',
                       max_leaf_nodes=None, max_samples=None,
                       min_impurity_decrease=0.0, min_impurity_split=None,
                       min_samples_leaf=1, min_samples_split=2,
                       min_weight_fraction_leaf=0.0, n_estimators=100,
                       n_jobs=None, oob_score=False, random_state=20, verbose=0,
                       warm_start=False)

Let’s apply this model on the test threads and predict the summary posts. To deter‐
mine the accuracy, we concatenate all identified summary posts and generate the 
ROUGE-1 score by comparing it with the annotator summary:
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# Function to calculate rouge_score for each thread
def calculate_rouge_score(x, column_name):
    # Get the original summary - only first value since they are repeated
    ref_summary = x['summary'].values[0]

    # Join all posts that have been predicted as summary
    predicted_summary = ''.join(x['text'][x[column_name]])

    # Return the rouge score for each ThreadID
    scorer = rouge_scorer.RougeScorer(['rouge1'], use_stemmer=True)
    scores = scorer.score(ref_summary, predicted_summary)
    return scores['rouge1'].fmeasure

test_df['predictedSummaryPost'] = model1.predict(test_df_tf)
print('Mean ROUGE-1 Score for test threads',
      test_df.groupby('ThreadID')[['summary','text','predictedSummaryPost']] \
      .apply(calculate_rouge_score, column_name='predictedSummaryPost').mean())

Out:

Mean ROUGE-1 Score for test threads 0.3439714323225145

We see that the mean ROUGE-1 score for all threads in the test set is 0.34, which is
comparable with extractive summarization scores on other public summarization
tasks. You will also notice on the leaderboard that the use of pretrained models such
as BERT improves the score, and we explore this technique in detail in Chapter 11.

random.seed(2)
random.sample(test_df['ThreadID'].unique().tolist(), 1)

Out:

['60974_588_2180141']

Let’s also take a look at one of the summarized results produced by this model to
understand how useful it might be:

example_df = test_df[test_df['ThreadID'] == '60974_588_2180141']
print('Total number of posts', example_df['postNum'].max())
print('Number of summary posts',
      example_df[example_df['predictedSummaryPost']].count().values[0])
print('Title: ', example_df['Title'].values[0])
example_df[['postNum', 'text']][example_df['predictedSummaryPost']]

Out:

Total number of posts 9
Number of summary posts 2
Title:  What's fun for kids?
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 postNum text

551 4 Well, you’re really in luck, because there’s a lot going on, including the Elmwood Avenue Festival of the
Arts (http://www.elmwoodartfest.org), with special activities for youngsters, performances (including one
by Nikki Hicks, one of my favorite local vocalists), and food of all kinds. Elmwood Avenue is one of the
area’s most colorful and thriving neighborhoods, and very walkable. The Buffalo Irish Festival is also going
on that weekend in Hamburg, as it happens, at the fairgrounds: www.buf...

552 5 Depending on your time frame, a quick trip to Niagara Falls would be great. It is a 45 minute drive from
Hamburg and well worth the investment of time. Otherwise you have some beaches in Angola to enjoy. If
the girls like to shop you have the Galleria, which is a great expansive Mall. If you enjoy a more eclectic
afternoon, lunch on Elmwood Avenue, a stroll through the Albright Know Art gallery, and hitting some of
the hip shops would be a cool afternoon. Darien Lake Theme Park is 40 minutes...

In the previous example, the original thread consisted of nine posts, two of which
have been picked to summarize the thread, as shown earlier. Reading through the
summary posts shows that the thread is about activities for youngsters, and there are
already some specific suggestions, such as Elmwood Avenue, Darien Lake Theme
Park, etc. Imagine that while scrolling through the forum search results, this informa‐
tion is provided on a mouse hover. It gives the user an accurate enough summary to
decide whether it’s interesting and click through for more details or continue looking
at other search results. You could also easily reuse this blueprint with other datasets as
mentioned at the start and customize the distance function, introduce additional fea‐
tures, and then train the model.

Closing Remarks
In this chapter, we introduced the concept of text summarization and provided blue‐
prints that can be used to generate summaries for different use cases. If you are look‐
ing to generate summaries from short text such as web pages, blogs, and news
articles, then the first blueprint based on topic representation using the LSA summa‐
rizer would be a good choice. If you are working with much larger text such as
speeches, book chapters, or scientific articles, then the blueprint using TextRank
would be a better choice. These blueprints are great as the first step in your journey
toward automatic text summarization as they are simple and fast. However, the third
blueprint using machine learning provides a more custom solution for your specific
use case. Provided you have the necessary annotated data, this method can be tailored
by adding features and optimizing the machine learning model to improve perfor‐
mance. For example, your company or product might have multiple policy docu‐
ments that govern user data, terms and conditions, and other such processes that you
want to summarize for a new user or employee. You could start with the third blue‐
print and customize the second step by adding features such as the number of clauses,
usage of block letters, presence of bold or underlined text, etc., that will help the
model summarize the important points in the policy documents.
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CHAPTER 10

Exploring Semantic Relationships with
Word Embeddings

The concept of similarity is fundamental to all machine learning tasks. In Chapter 5,
we explained how to compute text similarity based on the bag-of-words model. Given
two TF-IDF vectors for documents, their cosine similarity can be easily computed,
and we can use this information to search, cluster, or classify similar documents.

However, the concept of similarity in the bag-of-words model is completely based on
the number of common words in two documents. If documents do not share any
tokens, the dot product of the document vectors and hence the cosine similarity will
be zero. Consider the following two comments about a new movie, which could be
found on a social platform:

“What a wonderful movie.”
“The film is great.”

Obviously, the comments have a similar meaning even though they use completely
different words. In this chapter, we will introduce word embeddings as a means to
capture the semantics of words and use them to explore semantic similarities within a
corpus.

What You’ll Learn and What We’ll Build
For our use case we assume that we are market researchers and want to use texts
about cars to better understand some relationships in the car market. Specifically, we
want to explore similarities among car brands and models. For example, which mod‐
els of brand A are most similar to a given model of brand B?
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Our corpus consists of the 20 subreddits in the autos category of the Reddit Self-Posts
dataset, which was already used in Chapter 4. Each of these subreddits contains 1,000
posts on cars and motorcycles with brands such as Mercedes, Toyota, Ford, and
Harley-Davidson. Since those posts are questions, answers, and comments written
by users, we will actually get an idea of what these users implicitly consider as being
similar.

We will use the Gensim library again, which was introduced in Chapter 8. It provides
a nice API to train different types of embeddings and to use those models for seman‐
tic reasoning.

After studying this chapter, you will be able to use word embeddings for semantic
analysis. You will know how to use pretrained embeddings, how to train your own
embeddings, how to compare different models, and how to visualize them. You can
find the source code for this chapter along with some of the images in our GitHub
repository.

The Case for Semantic Embeddings
In the previous chapters, we used the TF-IDF vectorization for our models. It is easy
to compute, but it has some severe disadvantages:

• The document vectors have a very high dimensionality that is defined by the size
of the vocabulary. Thus, the vectors are extremely sparse; i.e., most entries are
zero.

• It does not work well for short texts like Twitter messages, service comments, and
similar content because the probability for common words is low for short texts.

• Advanced applications such as sentiment analysis, question answering, or
machine translation require capturing the real meaning of the words to work
correctly.

Still, the bag-of-words model works surprisingly well for tasks such as classification
or topic modeling, but only if the texts are sufficiently long and enough training data
is available. Remember that similarity in the bag-of-words model is solely based on
the existence of significant common words.

An embedding, in contrast, is a dense numerical vector representation of an object
that captures some kind of semantic similarity. When we talk of embeddings in the
context of text analysis, we have to distinguish word and document embeddings. A
word embedding is a vector representation for a single word, while a document embed‐
ding is a vector representing a document. By document we mean any sequence of
words, be it a short phrase, a sentence, a paragraph, or even a long article. In this
chapter, we will focus on dense vector representations for words.
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1 Inspired by Adrian Colyer’s “The Amazing Power of Word Vectors” blog post.
2 This frequently cited example originally came from the linguist Eugene Nida in 1975.

Word Embeddings
The target of an embedding algorithm can be defined as follows: given a dimension‐
ality d, find vector representations for words such that words with similar meanings
have similar vectors. The dimensionality d is a hyperparameter of any word embed‐
ding algorithm. It is typically set to a value between 50 and 300.

The dimensions themselves have no predefined or human-understandable meaning.
Instead, the model learns latent relations among the words from the text. Figure 10-1
(left) illustrates the concept. We have five-dimensional vectors for each word. Each of
these dimensions represents some relation among the words so that words similar in
that aspect have similar values in this dimension. Dimension names shown are possi‐
ble interpretations of those values.

Figure 10-1. Dense vector representations captioning semantic similarity of words (left)
can be used to answer analogy questions (right). We gave the vector dimensions hypo‐
thetical names like “Royalty” to show possible interpretations.1

The basic idea for training is that words occurring in similar contexts have similar
meanings. This is called the distributional hypothesis. Take, for example, the following
sentences describing tesgüino:2

• A bottle of ___ is on the table.
• Everybody likes ___ .
• Don’t have ___ before you drive.
• We make ___ out of corn.
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3 Jay Alammar’s blog post entitled “The Illustrated Word2Vec” gives a wonderful visual explanation of this
equation.

Even without knowing the word tesgüino, you get a pretty good understanding of its
meaning by analyzing typical contexts. You could also identify semantically similar
words because you know it’s an alcoholic beverage.

Analogy Reasoning with Word Embeddings
What’s really amazing is that word vectors built this way allow us to detect analogies
like “queen is to king like woman is to man” with vector algebra (Figure 10-1, right).
Let v w  be the word embedding for a word w. Then the analogy can be expressed
mathematically like this:

v queen − v king ≈ v woman − v man

If this approximate equation holds, we can reformulate the analogy as a question:
What is to king like “woman” is to “man”? Or mathematically:3

v woman + v king − v man ≈ ?

This allows some kind of fuzzy reasoning to answer analogy questions like this one:
“Given that Paris is the capital of France, what is the capital of Germany?” Or in a
market research scenario as the one we will explore: “Given that F-150 is a pickup
truck from Ford, what is the similar model from Toyota?”

Types of Embeddings
Several algorithms have been developed to train word embeddings. Gensim allows
you to train Word2Vec and FastText embeddings. GloVe embeddings can be used for
similarity queries but not trained with Gensim. We introduce the basic ideas of these
algorithms and briefly explain the more advanced but also more complex contextual‐
ized embedding methods. You will find the references to the original papers and fur‐
ther explanations at the end of this chapter.

Word2Vec
Even though there have been approaches for word embeddings before, the work of 
Tomáš Mikolov at Google (Mikolov et al., 2013) marks a milestone because it dramat‐
ically outperformed previous approaches, especially on analogy tasks such as the ones
just explained. There exist two variants of Word2Vec, the continuous bag-of-words
model (CBOW) and the skip-gram model (see Figure 10-2).
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Figure 10-2. Continuous bag-of words (left) versus skip-gram model (right).

Both algorithms use a sliding window over the text, defined by a target word wt and
the size of the context window c. In the example, c = 2, i.e., the training samples con‐
sist of the five words wt − 2,⋯, wt + 2. One such training sample is printed in bold: ...
is trying things to see .... In the CBOW architecture (left), the model is trained to
predict the target words from their context words. Here, a training sample consists of
the sum or average of the one-hot encoded vectors of the context words and the tar‐
get word as the label. In contrast, the skip-gram model (right) is trained to predict the
context words given the target word. In this case, each target word generates a sepa‐
rate training sample for each context word; there is no vector averaging. Thus, skip-
gram trains slower (much slower for large window sizes!) but often gives better
results for infrequent words.

Both embedding algorithms use a simple single-layer neural network and some tricks
for fast and scalable training. The learned embeddings are actually defined by the
weight matrix of the hidden layer. Thus, if you want to learn 100-dimensional vector
representations, the hidden layer has to consist of 100 neurons. The input and output
words are represented by one-hot vectors. The dimensionality of the embeddings and
size of the context window c are hyperparameters in all of the embedding methods
presented here. We will explore their impact on the embeddings later in this chapter.

GloVe
The GloVe (global vectors) approach, developed in 2014 by Stanford’s NLP group,
uses a global co-occurrence matrix to compute word vectors instead of a prediction
task (Pennington et al., 2014). A co-occurrence matrix for a vocabulary of size V has
the dimensionality V × V. Each cell i, j  in the matrix contains the number of co-
occurrences of the words wi and w j based again on a fixed context window size. The
embeddings are derived using a matrix factorization technique similar to those used
for topic modeling or dimensionality reduction.
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4 Words having the same pronunciation but different meanings are called homonyms. If they are spelled identi‐
cally, they are called homographs.

The model is called global because the co-occurrence matrix captures global corpus
statistics in contrast to Word2Vec, which uses only the local context window for its
prediction task. GloVe does not generally perform better than Word2Vec but pro‐
duces similarly good results with some differences depending on the training data
and the task (see Levy et al., 2014, for a discussion).

FastText
The third model we introduce was developed again by a team with Tomáš Mikolov,
this time at Facebook (Joulin et al., 2017). The main motivation was to handle out-of-
vocabulary words. Both Word2Vec and GloVe produce word embeddings only for
words contained in the training corpus. FastText, in contrast, uses subword informa‐
tion in the form of character n-grams to derive vector representations. The character
trigrams for fasttext are, for example, fas, ast, stt, tte, tex, and ext. The lengths of n-
grams used (minimum and maximum) are hyperparameters of the model.

Any word vector is built from the embeddings of its character n-grams. And that
does work even for words previously unseen by the model because most of the char‐
acter n-grams have embeddings. For example, the vector for fasttext will be similar to
fast and text because of the common n-grams. Thus, FastText is pretty good at finding
embeddings for misspelled words that are usually out-of-vocabulary.

Deep contextualized embeddings
The semantic meaning of a word often depends on its context. Think of different
meanings of the word right in “I am right” and “Please turn right.”4 All three models
(Word2Vec, GloVe, and FastText) have just one vector representation per word; they
cannot distinguish between context-dependent semantics.

Contextualized embeddings like Embedding from Language Models (ELMo) take the
context, i.e., the preceding and following words, into account (Peters et al., 2018).
There is not one word vector stored for each word that can simply be looked up.
Instead, ELMo passes the whole sentence through a multilayer bidirectional long
short-term memory neural network (LSTM) and assembles the vectors for each word
from weights of the internal layers. Recent models such as BERT and its successors
improve the approach by using attention transformers instead of bidirectional
LSTMs. The main benefit of all these models is transfer learning: the ability to use a
pretrained language model and fine-tune it for specific downstream tasks such as
classification or question answering. We will cover this concept in more detail in
Chapter 11.
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5 For example, from RaRe Technologies and 3Top.

Blueprint: Using Similarity Queries on
Pretrained Models
After all this theory, let’s start some practice. For our first examples, we

use pretrained embeddings. These have the advantage that somebody else spent the
training effort, usually on a large corpus like Wikipedia or news articles. In our blue‐
print, we will check out available models, load one of them, and do some reasoning
with word vectors.

Loading a Pretrained Model
Several models are publicly available for download.5 We will describe later how to
load custom models, but here we will use Gensim’s convenient downloader API
instead.

Per the default, Gensim stores models under ~/gensim-data. If you want to change
this to a custom path, you can set the environment variable GENSIM_DATA_DIR before
importing the downloader API. We will store all models in the local directory models:

import os
os.environ['GENSIM_DATA_DIR'] = './models'

Now let’s take a look at the available models. The following lines transform the dictio‐
nary returned by api.info()['models'] into a DataFrame to get a nicely formatted
list and show the first five of a total of 13 entries:

import gensim.downloader as api

info_df = pd.DataFrame.from_dict(api.info()['models'], orient='index')
info_df[['file_size', 'base_dataset', 'parameters']].head(5)

file_size base_dataset parameters

fasttext-wiki-news-subwords-300 1005007116 Wikipedia 2017, UMBC webbase
corpus and statmt.org news
dataset (16B tokens)

{'dimension’: 300}

conceptnet-numberbatch-17-06-300 1225497562 ConceptNet, word2vec, GloVe,
and OpenSubtitles 2016

{'dimension’: 300}

word2vec-ruscorpora-300 208427381 Russian National Corpus (about
250M words)

{'dimension’: 300,
‘window_size’: 10}
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file_size base_dataset parameters

word2vec-google-news-300 1743563840 Google News (about 100 billion
words)

{'dimension’: 300}

glove-wiki-gigaword-50 69182535 Wikipedia 2014 + Gigaword 5
(6B tokens, uncased)

{'dimension’: 50}

We will use the glove-wiki-gigaword-50 model. This model with 50-dimensional word
vectors is small in size but still quite comprehensive and fully sufficient for our pur‐
poses. It was trained on roughly 6 billion lowercased tokens. api.load downloads the
model if required and then loads it into memory:

model = api.load("glove-wiki-gigaword-50")

The file we downloaded actually does not contain a full GloVe model but just the
plain word vectors. As the internal states of the model are not included, such reduced
models cannot be trained further.

Similarity Queries
Given a model, the vector for a single word like king can be accessed simply via the
property model.wv['king'] or even more simply by the shortcut model['king'].
Let’s take a look at the first 10 components of the 50-dimensional vectors for king and
queen.

v_king = model['king']
v_queen = model['queen']

print("Vector size:", model.vector_size)
print("v_king  =", v_king[:10])
print("v_queen =", v_queen[:10])
print("similarity:", model.similarity('king', 'queen'))

Out:

Vector size: 50
v_king  = [ 0.5   0.69 -0.6  -0.02  0.6  -0.13 -0.09  0.47 -0.62 -0.31]
v_queen = [ 0.38  1.82 -1.26 -0.1   0.36  0.6  -0.18  0.84 -0.06 -0.76]
similarity: 0.7839043

As expected, the values are similar in many dimensions, resulting in a high similarity
score of over 0.78. So queen is quite similar to king, but is it the most similar word?
Well, let’s check the three words most similar to king with a call to the respective func‐
tion:

model.most_similar('king', topn=3)

Out:

[('prince', 0.824), ('queen', 0.784), ('ii', 0.775)]
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In fact, the male prince is more similar than queen, but queen is second in the list,
followed by the roman numeral II, because many kings have been named “the
second.”

Similarity scores on word vectors are generally computed by cosine similarity, which
was introduced in Chapter 5. Gensim provides several variants of similarity func‐
tions. For example, the cosine_similarities method computes the similarity
between a word vector and an array of other word vectors. Let’s compare king to some
more words:

v_lion = model['lion']
v_nano = model['nanotechnology']

model.cosine_similarities(v_king, [v_queen, v_lion, v_nano])

Out:

array([ 0.784,  0.478, -0.255], dtype=float32)

Based on the training data for the model (Wikipedia and Gigaword), the model
assumes the word king to be similar to queen, still a little similar to lion, but not at all
similar to nanotechnology. Note, that in contrast to nonnegative TF-IDF vectors, word
embeddings can also be negative in some dimensions. Thus, the similarity values
range from +1 to −1.

The function most_similar() used earlier allows also two parameters, positive and
negative, each a list of vectors. If positive = pos1,⋯, posn  and
negative = neg1,⋯, negm , then this function finds the word vectors most similar to
∑i = 1

n posi − ∑ j = 1
m neg j.

Thus, we can formulate our analogy query about the royals in Gensim this way:

model.most_similar(positive=['woman', 'king'], negative=['man'], topn=3)

Out:

[('queen', 0.852), ('throne', 0.766), ('prince', 0.759)]

And the question for the German capital:

model.most_similar(positive=['paris', 'germany'], negative=['france'], topn=3)

Out:

[('berlin', 0.920), ('frankfurt', 0.820), ('vienna', 0.818)]

We can also leave out the negative list to find the word closest to the sum of france
and capital:

model.most_similar(positive=['france', 'capital'], topn=1)
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Out:

[('paris', 0.784)]

It is indeed paris! That’s really amazing and shows the great power of word vectors.
However, as always in machine learning, the models are not perfect. They can learn
only what’s in the data. Thus, by far not all similarity queries yield such staggering
results, as the following example demonstrates:

model.most_similar(positive=['greece', 'capital'], topn=3)

Out:

[('central', 0.797), ('western', 0.757), ('region', 0.750)]

Obviously, there has not been enough training data for the model to derive the rela‐
tion between Athens and Greece.

Gensim also offers a variant of cosine similarity, most_similar_cos
mul. This is supposed to work better for analogy queries than the
one shown earlier because it smooths the effects of one large simi‐
larity term dominating the equation (Levy et al., 2015). For the pre‐
vious examples, however, the returned words would be the same,
but the similarity scores would be higher.

If you train embeddings with redacted texts from Wikipedia and news articles, your
model will be able to capture factual relations like capital-country quite well. But
what about the market research question comparing products of different brands?
Usually you won’t find this information on Wikipedia but rather on up-to-date social
platforms where people discuss products. If you train embeddings on user comments
from a social platform, your model will learn word associations from user discus‐
sions. This way, it becomes a representation of what people think about a relationship,
independent of whether this is objectively true. This is an interesting side effect you
should be aware of. Often you want to capture exactly this application specific bias,
and this is what we are going to do next. But be aware that every training corpus con‐
tains some bias, which may also lead to unwanted side effects (see “Man Is to Com‐
puter Programmer as Woman Is to Homemaker”).

Man Is to Computer Programmer as Woman Is to Homemaker
Most state-of-the-art approaches for NLP tasks ranging from classification to
machine translation use semantic embeddings for better results. Thus, the quality of
the embeddings has a direct impact on the quality of the final model. Unfortunately, 
machine learning algorithms have the tendency to amplify biases present in the train‐
ing data. This is also true for word embeddings.
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Bolukbasi et al., showed that “even word embeddings trained on Google News articles
exhibit female/male gender stereotypes to a disturbing extent.” This is problematic,
as a common approach is to use pretrained word embeddings for downstream
tasks such as classification. Thus, debiasing training data is a hot topic in research
nowadays.

Blueprints for Training and Evaluating Your Own
Embeddings
In this section, we will train and evaluate domain-specific embeddings on 20,000 user
posts on autos from the Reddit Selfposts dataset. Before we start training, we have to
consider the options for data preparation as they always have a significant impact on
the usefulness of a model for a specific task.

Data Preparation
Gensim requires sequences of tokens as input for the training. Besides tokenization
there are some other aspects to consider for data preparation. Based on the distribu‐
tional hypothesis, words frequently appearing together or in similar context will get
similar vectors. Thus, we should make sure that co-occurrences are actually identified
as such. If you do not have very many training sentences, as in our example here, you
should include these steps in your preprocessing:

1. Clean text from unwanted tokens (symbols, tags, etc.).
2. Put all words into lowercase.
3. Use lemmas.

All this keeps the vocabulary small and training times short. Of course, inflected and
uppercase words will be out-of-vocabulary if we prune our training data according to
these rules. This is not a problem for semantic reasoning on nouns as we want to do,
but it could be, if we wanted to analyze, for example, emotions. In addition, you
should consider these token categories:

Stop words
Stop words can carry valuable information about the context of non-stop words.
Thus, we prefer to keep the stop words.

Numbers
Depending on the application, numbers can be valuable or just noise. In our
example, we are looking at auto data and definitely want to keep tokens like 328
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because it’s a BMW model name. You should keep numbers if they carry relevant
information.

Another question is whether we should split on sentences or just keep the posts as
they are. Consider the imaginary post “I like the BMW 328. But the Mercedes C300 is
also great.” Should these sentences be treated like two different posts for our similarity
task? Probably not. Thus, we will treat the list of all lemmas in one user post as a sin‐
gle “sentence” for training.

We already prepared the lemmas for the 20,000 Reddit posts on autos in Chapter 4.
Therefore, we can skip that part of data preparation here and just load the lemmas
into a Pandas DataFrame:

db_name = "reddit-selfposts.db"
con = sqlite3.connect(db_name)
df = pd.read_sql("select subreddit, lemmas, text from posts_nlp", con)
con.close()

df['lemmas'] = df['lemmas'].str.lower().str.split() # lower case tokens
sents = df['lemmas'] # our training "sentences"

Phrases
Especially in English, the meaning of a word may change if the word is part of a com‐
pound phrase. Take, for example, timing belt, seat belt, or rust belt. All of these com‐
pounds have different meanings, even though all of them can be found in our corpus.
So, it may better to treat such compounds as single tokens.

We can use any algorithm to detect such phrases, for example, spaCy’s detection of
noun chunks (see “Linguistic Processing with spaCy” on page 104). A number of stat‐
istical algorithms also exist to identify such collocations, such as extraordinary fre‐
quent n-grams. The original Word2Vec paper (Mikolov et al., 2013) uses a simple but
effective algorithm based on pointwise mutual information (PMI), which basically
measures the statistical dependence between the occurrences of two words.

For the model that we are now training, we use an advanced version called normal‐
ized pointwise mutual information (NPMI) because it gives more robust results. And
given its limited value range from −1 to +1, it is also easier to tune. The NPMI thres‐
hold in our initial run is set to a rather low value of 0.3. We choose a hyphen as a
delimiter to connect the words in a phrase. This generates compound tokens like
harley-davidson, which will be found in the text anyway. The default underscore
delimiter would result in a different token:

from gensim.models.phrases import Phrases, npmi_scorer

phrases = Phrases(sents, min_count=10, threshold=0.3,
                  delimiter=b'-', scoring=npmi_scorer)
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With this phrase model we can identify some interesting compound words:

sent = "I had to replace the timing belt in my mercedes c300".split()
phrased = phrases[sent]
print('|'.join(phrased))

Out:

I|had|to|replace|the|timing-belt|in|my|mercedes-c300

timing-belt is good, but we do not want to build compounds for combinations of
brands and model names, like mercedes c300. Thus, we will analyze the phrase model
to find a good threshold. Obviously, the chosen value was too low. The following code
exports all phrases found in our corpus together with their scores and converts the
result to a DataFrame for easy inspection:

phrase_df = pd.DataFrame(phrases.export_phrases(sents),
                         columns =['phrase', 'score'])
phrase_df = phrase_df[['phrase', 'score']].drop_duplicates() \
            .sort_values(by='score', ascending=False).reset_index(drop=True)
phrase_df['phrase'] = phrase_df['phrase'].map(lambda p: p.decode('utf-8'))

Now we can check what would be a good threshold for mercedes:
phrase_df[phrase_df['phrase'].str.contains('mercedes')]

phrase score

83 mercedes benz 0.80

1417 mercedes c300 0.47

As we can see, it should be larger than 0.5 and less than 0.8. Checking with a few
other brands like bmw, ford, or harley davidson lets us identify 0.7 as a good threshold
to identify compound vendor names but keep brands and models separate. In fact,
with the rather stringent threshold of 0.7, the phrase model still keeps many relevant
word combinations, for example, street glide (Harley-Davidson), land cruiser
(Toyota), forester xt (Subaru), water pump, spark plug, or timing belt.

We rebuild our phraser and create a new column in our DataFrame with single tokens
for compound words:

phrases = Phrases(sents, min_count=10, threshold=0.7,
                  delimiter=b'-', scoring=npmi_scorer)

df['phrased_lemmas'] = df['lemmas'].map(lambda s: phrases[s])
sents = df['phrased_lemmas']

The result of our data preparation steps are sentences consisting of lemmas and
phrases. We will now train different embedding models and check which insights we
can gain from them.
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Blueprint: Training Models with Gensim
Word2Vec and FastText embeddings can be conveniently trained by Gen‐
sim. The following call to Word2Vec trains 100-dimensional Word2Vec
embeddings on the corpus with a window size of 2, i.e., target word

±2 context words. Some other relevant hyperparameters are passed as well for illus‐
tration. We use the skip-gram algorithm and train the network in four threads for
five epochs:

from gensim.models import Word2Vec

model = Word2Vec(sents,       # tokenized input sentences
                 size=100,    # size of word vectors (default 100)
                 window=2,    # context window size (default 5)
                 sg=1,        # use skip-gram (default 0 = CBOW)
                 negative=5,  # number of negative samples (default 5)
                 min_count=5, # ignore infrequent words (default 5)
                 workers=4,   # number of threads (default 3)
                 iter=5)      # number of epochs (default 5)

This takes about 30 seconds on an i7 laptop for the 20,000 sentences, so it is quite
fast. More samples and more epochs, as well as longer vectors and larger context win‐
dows, will increase the training time. For example, training 100-dimensional vectors
with a context window size of 30 requires about 5 minutes in this setting for skip-
gram. The CBOW training time, in contrast, is rather independent of the context
window size.

The following call saves the full model to disk. Full model means the complete neural
network, including all internal states. This way, the model can be loaded again and
trained further:

model.save('./models/autos_w2v_100_2_full.bin')

The choice of the algorithm as well as those hyperparameters have quite an impact on
the resulting models. Therefore, we provide a blueprint to train and inspect different
models. A parameter grid defines which algorithm variant (CBOW or skip-gram)
and window sizes will be trained for Word2Vec or FastText. We could also vary vector
size here, but that parameter does not have such a big impact. In our experience, 50-
or 100-dimensional vectors work well on smaller corpora. So, we fix the vector size to
100 in our experiments:

from gensim.models import Word2Vec, FastText

model_path = './models'
model_prefix = 'autos'

param_grid = {'w2v': {'variant': ['cbow', 'sg'], 'window': [2, 5, 30]},
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              'ft': {'variant': ['sg'], 'window': [5]}}
size = 100

for algo, params in param_grid.items():
    for variant in params['variant']:
        sg = 1 if variant == 'sg' else 0
        for window in params['window']:
            if algo == 'w2v':
                model = Word2Vec(sents, size=size, window=window, sg=sg)
            else:
                model = FastText(sents, size=size, window=window, sg=sg)

            file_name = f"{model_path}/{model_prefix}_{algo}_{variant}_{window}"
            model.wv.save_word2vec_format(file_name + '.bin', binary=True)

As we just want to analyze the similarities within our corpus, we do not save the com‐
plete models here but just the plain word vectors. These are represented by the class
KeyedVectors and can be accessed by the model property model.wv. This generates
much smaller files and is fully sufficient for our purpose.

Beware of information loss! When you reload models consisting
only of the word vectors, they cannot be trained further. Moreover,
FastText models lose the ability to derive embeddings for out-of-
vocabulary words.

Blueprint: Evaluating Different Models
Actually, it is quite hard to algorithmically identify the best hyperparame‐
ters for a domain-specific task and corpus. Thus, it is not a bad idea to
inspect the models manually and check how they perform to identify

some already-known relationships.

The saved files containing only the word vectors are small (about 5 MB each), so we
can load many of them into memory and run some comparisons. We use a subset of
five models to illustrate our findings. The models are stored in a dictionary indexed
by the model name. You could add any models you’d like to compare, even the pre‐
trained GloVe model from earlier:

from gensim.models import KeyedVectors

names = ['autos_w2v_cbow_2', 'autos_w2v_sg_2',
         'autos_w2v_sg_5', 'autos_w2v_sg_30', 'autos_ft_sg_5']
models = {}

for name in names:
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    file_name = f"{model_path}/{name}.bin"
    models[name] = KeyedVectors.load_word2vec_format(file_name, binary=True)

We provide a small blueprint function for the comparison. It takes a list of models
and a word and produces a DataFrame with the most similar words according to each
model:

def compare_models(models, **kwargs):

    df = pd.DataFrame()
    for name, model in models:
        df[name] = [f"{word} {score:.3f}"
                    for word, score in model.most_similar(**kwargs)]
    df.index = df.index + 1 # let row index start at 1
    return df

Now let’s see what effect the parameters have on our computed models. As we are
going to analyze the car market, we check out the words most similar to bmw:

compare_models([(n, models[n]) for n in names], positive='bmw', topn=10)

autos_w2v_cbow_2 autos_w2v_sg_2 autos_w2v_sg_5 autos_w2v_sg_30 autos_ft_sg_5

1 mercedes 0.873 mercedes 0.772 mercedes 0.808 xdrive 0.803 bmws 0.819

2 lexus 0.851 benz 0.710 335i 0.740 328i 0.797 bmwfs 0.789

3 vw 0.807 porsche 0.705 328i 0.736 f10 0.762 m135i 0.774

4 benz 0.806 lexus 0.704 benz 0.723 335i 0.760 335i 0.773

5 volvo 0.792 merc 0.695 x-drive 0.708 535i 0.755 mercedes_benz 0.765

6 harley 0.783 mercede 0.693 135i 0.703 bmws 0.745 mercedes 0.760

7 porsche 0.781 mercedes-benz 0.680 mercede 0.690 x-drive 0.740 35i 0.747

8 subaru 0.777 audi 0.675 e92 0.685 5-series 0.736 merc 0.747

9 mb 0.769 335i 0.670 mercedes-benz 0.680 550i 0.728 135i 0.746

10 volkswagen 0.768 135i 0.662 merc 0.679 435i 0.726 435i 0.744

Interestingly, the first models with the small window size of 2 produce mainly other
car brands, while the model with window size 30 produces basically lists of different
BMW models. In fact, shorter windows emphasize paradigmatic relations, i.e., words
that can be substituted for each other in a sentence. In our case, this would be brands
as we are searching for words similar to bmw. Larger windows capture more syntag‐
matic relations, where words are similar if they frequently show up in the same con‐
text. Window size 5, which is the default, produced a mix of both. For our data,
paradigmatic relations are best represented by the CBOW model, while syntagmatic
relations require a large window size and are therefore better captured by the skip-
gram model. The outputs of the FastText model demonstrate its property that simi‐
larly spelled words get similar scores.
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Looking for similar concepts
The CBOW vectors with window size 2 are pretty precise on paradigmatic relations.
Starting from some known terms, we can use such a model to identify the central
terms and concepts of a domain. Table 10-1 shows the output of some similarity
queries on model autos_w2v_cbow_2. The column concept was added by us to high‐
light what kind of words we would expect as output.

Table 10-1. Most similar neighbors for selected words using the CBOW model with window
size 2

Word Concept Most Similar
toyota car brand ford mercedes nissan certify dodge mb bmw lexus chevy honda
camry car model corolla f150 f-150 c63 is300 ranger 335i 535i 328i rx
spark-plug car part water-pump gasket thermostat timing-belt tensioner throttle-body serpentine-belt radiator intake-

manifold fluid
washington location oregon southwest ga ottawa san_diego valley portland mall chamber county

Of course, the answers are not always correct with regard to our expectations; they
are just similar words. For example, the list for toyota contains not only car brands
but also several models. In real-life projects, however, domain experts from the busi‐
ness department can easily identify the wrong terms and still find interesting new
associations. But manual curation is definitely necessary when you work with word
embeddings this way.

Analogy reasoning on our own models
Now let’s find out how our different models are capable of detecting analogous con‐
cepts. We want to find out if Toyota has a product comparable to Ford’s F-150 pickup
truck. So our question is: What is to “toyota” as “f150” is to “ford”? We use our func‐
tion compare_models from earlier and transpose the result to compare the results of
wv.most_similar() for different models:

compare_models([(n, models[n]) for n in names],
               positive=['f150', 'toyota'], negative=['ford'], topn=5).T

Out:

1 2 3 4 5

autos_w2v_cbow_2 f-150 0.850 328i 0.824 s80 0.820 93 0.819 4matic 0.817

autos_w2v_sg_2 f-150 0.744 f-250 0.727 dodge-ram 0.716 tacoma 0.713 ranger 0.708

autos_w2v_sg_5 tacoma 0.724 tundra 0.707 f-150 0.664 highlander 0.644 4wd 0.631

autos_w2v_sg_30 4runner 0.742 tacoma 0.739 4runners 0.707 4wd 0.678 tacomas 0.658

autos_ft_sg_5 toyotas 0.777 toyo 0.762 tacoma 0.748 tacomas 0.745 f150s 0.744
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6 If you run the code yourself, the results may be slightly different than the ones printed in the book because of
random initialization.

In reality, the Toyota Tacoma is a direct competitor to the F-150 as well as the Toyota
Tundra. With that in mind, the skip-gram model with the window size 5 gives the
best results.6 In fact, if you exchange toyota for gmc, you get the sierra, and if you ask
for chevy, you get silverado as the most similar to this model. All of these are compet‐
ing full-size pickup trucks. This also works quite well for other brands and models,
but of course it works best for those models that are heavily discussed in the Reddit
forum.

Blueprints for Visualizing Embeddings
If we explore our corpus on the basis of word embeddings, as we do in this chapter,
we are not interested in the actual similarity scores because the whole concept is
inherently fuzzy. What we want to understand are semantic relations based on the
concepts of closeness and similarity. Therefore, visual representations can be
extremely helpful for the exploration of word embeddings and their relations. In this
section, we will first visualize embeddings by using different dimensionality reduc‐
tion techniques. After that, we will show how to visually explore the semantic neigh‐
borhood of given keywords. As we will see, this type of data exploration can reveal
quite interesting relationships between domain-specific terms.

Blueprint: Applying Dimensionality Reduction
High-dimensional vectors can be visualized by projecting the data into
two or three dimensions. If the projection works well, it is possible to vis‐
ually detect clusters of related terms and get a much deeper understanding

of semantic concepts in the corpus. We will look for clusters of related words and
explore the semantic neighborhood of certain keywords in the model with window
size 30, which favors syntagmatic relations. Thus, we expect to see a “BMW” cluster
with BMW terms, a “Toyota” cluster with Toyota terms, and so on.

Dimensionality reduction also has many use cases in the area of machine learning.
Some learning algorithms have problems with high-dimensional and often sparse
data. Dimensionality reduction techniques such as PCA, t-SNE, or UMAP (see
“Dimensionality Reduction Techniques” on page 285) try to preserve or even high‐
light important aspects of the data distribution by the projection. The general idea
is to project the data in a way that objects close to each other in high-dimensional
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space are close in the projection and, similarly, distant objects remain distant. In our
examples, we will use the UMAP algorithm because it provides the best results for
visualization. But as the umap library implements the scikit-learn estimator interface,
you can easily replace the UMAP reducer with scikit-learn’s PCA or TSNE classes.

Dimensionality Reduction Techniques
There are many different algorithms for dimensionality reduction. Frequently used
for visualization are PCA, t-SNE, and UMAP.

Principal Component Analysis (PCA) performs a linear projection of the data such
that most of the variance in the data points is preserved. Mathematically, it is based
on the eigenvectors of the largest eigenvalues of the covariance matrix (the principal
components). PCA only takes the global data distribution into account. Independent
of local structures, all data points are transformed in the same way. Except for the
number of dimensions in the target space (n_components), PCA has no hyperparame‐
ters to tune.

Nonlinear algorithms such as t-SNE and UMAP try to balance local and global
aspects in the mapping. Thus, different areas of the original space get projected differ‐
ently dependent on the local data distribution. Both algorithms provide hyperpara‐
meters that need to be carefully selected to produce good results. For t-SNE this is the
perplexity (roughly the effective number of nearest neighbors of each point). For
UMAP you need to specify the size of the local neighborhood (n_neighbors) and in
addition the minimum distance of points in the projection (min_dist). t-SNE, pub‐
lished in 2008, is very popular but has some severe limitations. It preserves the local
structure much better than the global structure, it does not scale well, and it works
practically only for two or three dimensions. UMAP, published in 2018, is faster and
retains the global data structure much better.

The following code block contains the basic operations to project the embeddings
into two-dimensional space with UMAP, as shown in Figure 10-3. After the selection
of the embedding models and the words to plot (in this case we take the whole
vocabulary), we instantiate the UMAP dimensionality reducer with target dimen‐
sionality n_components=2. Instead of the standard Euclidean distance metric, we use
the cosine as usual. The embeddings are then projected to 2D by calling
reducer.fit_transform(wv).

from umap import UMAP

model = models['autos_w2v_sg_30']
words = model.vocab
wv = [model[word] for word in words]
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7 You’ll find the colorized figures in the electronic versions and on GitHub.

reducer = UMAP(n_components=2, metric='cosine', n_neighbors = 15, min_dist=0.1)
reduced_wv = reducer.fit_transform(wv)

Figure 10-3. Two-dimensional UMAP projections of all word embeddings of our model.
A few words and their most similar neighbors are highlighted to explain some of the clus‐
ters in this scatter plot.

We use Plotly Express here for visualization instead of Matplotlib because it has two
nice features. First, it produces interactive plots. When you hover with the mouse
over a point, the respective word will be displayed. Moreover, you can zoom in and
out and select regions. The second nice feature of Plotly Express is its simplicity. All
you need to prepare is a DataFrame with the coordinates and the metadata to be dis‐
played. Then you just instantiate the chart, in this case the scatter plot (px.scatter):

import plotly.express as px

plot_df = pd.DataFrame.from_records(reduced_wv, columns=['x', 'y'])
plot_df['word'] = words
params = {'hover_data': {c: False for c in plot_df.columns},
          'hover_name': 'word'}

fig = px.scatter(plot_df, x="x", y="y", opacity=0.3, size_max=3, **params)
fig.show()

You can find a more general blueprint function plot_embeddings in the embeddings
package in our GitHub repository. It allows you to choose the dimensionality reduc‐
tion algorithm and highlight selected search words with their most similar neighbors
in the low-dimensional projection. For the plot in Figure 10-3 we inspected some
clusters manually beforehand and then explicitly named a few typical search words to
colorize the clusters.7 In the interactive view, you could see the words when you hover
over the points.
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Here is the code to produce this diagram:

from blueprints.embeddings import plot_embeddings

search = ['ford', 'lexus', 'vw', 'hyundai',
          'goodyear', 'spark-plug', 'florida', 'navigation']

plot_embeddings(model, search, topn=50, show_all=True, labels=False,
                algo='umap', n_neighbors=15, min_dist=0.1)

For data exploration, it might be more interesting to visualize only the set of search
words and their most similar neighbors, without all other points. Figure 10-4 shows
an example generated by the following lines. Displayed are the search words and their
top 10 most similar neighbors:

search = ['ford', 'bmw', 'toyota', 'tesla', 'audi', 'mercedes', 'hyundai']

plot_embeddings(model, search, topn=10, show_all=False, labels=True,
    algo='umap', n_neighbors=15, min_dist=10, spread=25)

Figure 10-4. Two-dimensional UMAP projection of selected keywords words and their
most similar neighbors.

Figure 10-5 shows the same keywords but with many more similar neighbors as a
three-dimensional plot. It is nice that Plotly allows you to rotate and zoom into the
point cloud. This way it is easy to investigate interesting areas. Here is the call to gen‐
erate that diagram:

plot_embeddings(model, search, topn=30, n_dims=3,
    algo='umap', n_neighbors=15, min_dist=.1, spread=40)

To visualize analogies such as tacoma is to toyota like f150 is to ford, you should use
the linear PCA transformation. Both UMAP and t-SNE distort the original space in a
nonlinear manner. Therefore, the direction of difference vectors in the projected
space can be totally unrelated to the original direction. Even PCA distorts because of
shearing, but the effect is not as strong as in UMAP or t-SNE.
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Figure 10-5. Three-dimensional UMAP projection of selected keywords and their most
similar neighbors.

Blueprint: Using the TensorFlow Embedding Projector
A nice alternative to a self-implemented visualization function is the
TensorFlow Embedding Projector. It also supports PCA, t-SNE, and
UMAP and offers some convenient options for data filtering and high‐

lighting. You don’t even have to install TensorFlow to use it because there is an online
version available. A few datasets are already loaded as a demo.

To display our own word embeddings with the TensorFlow Embedding Projector, we
need to create two files with tabulator-separated values: one file with the word vectors
and an optional file with metadata for the embeddings, which in our case are simply
the words. This can be achieved with a few lines of code:

import csv

name = 'autos_w2v_sg_30'
model = models[name]

with open(f'{model_path}/{name}_words.tsv', 'w', encoding='utf-8') as tsvfile:
    tsvfile.write('\n'.join(model.vocab))

with open(f'{model_path}/{name}_vecs.tsv', 'w', encoding='utf-8') as tsvfile:
    writer = csv.writer(tsvfile, delimiter='\t',
                        dialect=csv.unix_dialect, quoting=csv.QUOTE_MINIMAL)
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    for w in model.vocab:
        _ = writer.writerow(model[w].tolist())

Now we can load our embeddings into the projector and navigate through the 3D vis‐
ualization. For the detection of clusters, you should use UMAP or t-SNE. Figure 10-6
shows a cutout of the UMAP projection for our embeddings. In the projector, you
can click any data point or search for a word and get the first 100 neighbors highligh‐
ted. We chose harley as a starting point to explore the terms related to Harley-
Davidson. As you can see, this kind of visualization can be extremely helpful when
exploring important terms of a domain and their semantic relationship.

Figure 10-6. Visualization of embeddings with TensorFlow Embedding Projector.

Blueprint: Constructing a Similarity Tree
The words with their similarity relations can be interpreted as a network
graph in the following way: the words represent the nodes of the graph,
and an edge is created whenever two nodes are “very” similar. The crite‐

rion for this could be either that the nodes are among their top-n most-similar neigh‐
bors or a threshold for the similarity score. However, most of the words in the
vicinity of a word are similar not only to that word but also to each other. Thus, the
complete network graph even for a small subset of words would have too many edges
for comprehensible visualization. Therefore, we start with a slightly different
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approach and create a subgraph of this network, a similarity tree. Figure 10-7 shows
such a similarity tree for the root word noise.

Figure 10-7. Similarity tree of words most similar to noise.

We provide two blueprint functions to create such visualizations. The first one,
sim_tree, generates the similarity tree starting from a root word. The second one,
plot_tree, creates the plot. We use Python’s graph library networkx in both
functions.

Let’s first look at sim_tree. Starting from a root word, we look for the top-n most-
similar neighbors. They are added to the graph with the according edges. Then we do
the same for each of these newly discovered neighbors, and their neighbors, and so
on, until a maximum distance to the root node is reached. Internally, we use a queue
(collections.deque) to implement a breadth-first search. The edges are weighted by
similarity, which is used later to style the line width:

import networkx as nx
from collections import deque

def sim_tree(model, word, top_n, max_dist):

    graph = nx.Graph()
    graph.add_node(word, dist=0)

    to_visit = deque([word])
    while len(to_visit) > 0:
        source = to_visit.popleft() # visit next node
        dist = graph.nodes[source]['dist']+1

        if dist <= max_dist: # discover new nodes
            for target, sim in model.most_similar(source, topn=top_n):
                if target not in graph:
                    to_visit.append(target)
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                    graph.add_node(target, dist=dist)
                    graph.add_edge(source, target, sim=sim, dist=dist)
    return graph

The function plot_tree consists of just a few calls to create the layout and to draw
the nodes and edges with some styling. We used Graphviz’s twopi layout to create the
snowflake-like positioning of nodes. A few details have been left out here for the sake
of simplicity, but you can find the full code on GitHub:

from networkx.drawing.nx_pydot import graphviz_layout

def plot_tree(graph, node_size=1000, font_size=12):

    pos = graphviz_layout(graph, prog='twopi', root=list(graph.nodes)[0])

    colors = [graph.nodes[n]['dist'] for n in graph] # colorize by distance
    nx.draw_networkx_nodes(graph, pos, node_size=node_size, node_color=colors,
                           cmap='Set1', alpha=0.4)
    nx.draw_networkx_labels(graph, pos, font_size=font_size)

    for (n1, n2, sim) in graph.edges(data='sim'):
         nx.draw_networkx_edges(graph, pos, [(n1, n2)], width=sim, alpha=0.2)

    plt.show()

Figure 10-7 was generated with these functions using this parametrization:

model = models['autos_w2v_sg_2']
graph = sim_tree(model, 'noise', top_n=10, max_dist=3)
plot_tree(graph, node_size=500, font_size=8)

It shows the most similar words to noise and their most similar words up to an imag‐
ined distance of 3 to noise. The visualization suggests that we created a kind of a
taxonomy, but actually we didn’t. We just chose to include only a subset of the possi‐
ble edges in our graph to highlight the relationships between a “parent” word and its
most similar “child” words. The approach ignores possible edges among siblings or to
grandparents. The visual presentation nevertheless helps to explore the specific
vocabulary of an application domain around the root word. However, Gensim also
implements Poincaré embeddings for learning hierarchical relationships among
words.

The model with the small context window of 2 used for this figure brings out the dif‐
ferent kinds and synonyms of noises. If we choose a large context window instead, we
get more concepts related to the root word. Figure 10-8 was created with these
parameters:

model = models['autos_w2v_sg_30']
graph = sim_tree(model, 'spark-plug', top_n=8, max_dist=2)
plot_tree(graph, node_size=500, font_size=8)

Blueprints for Visualizing Embeddings | 291

https://oreil.ly/W-zbu
https://oreil.ly/mff7p


Figure 10-8. Similarity tree of words most similar to spark-plug’s most similar words.

Here, we chose spark-plug as root word and selected the model with window size 30.
The generated diagram gives a nice overview about domain-specific terms related to
spark-plugs. For example, the codes like p0302, etc., are the standardized OBD2 error
codes for misfires in the different cylinders.

Of course, these charts also bring up some the weaknesses of our data preparation.
We see four nodes for spark-plug, sparkplug, spark, and plugs, all of which are repre‐
senting the same concept. If we wanted to have a single embedding for all of these, we
would have to merge the different forms of writing into a single token.

Closing Remarks
Exploring the similar neighbors of certain key terms in domain-specific models can
be a valuable technique to discover latent semantic relationships among words in a
domain-specific corpus. Even though the whole concept of word similarity is inher‐
ently fuzzy, we produced really interesting and interpretable results by training a sim‐
ple neural network on just 20,000 user posts about cars.

As in most machine learning tasks, the quality of the results is strongly influenced by
data preparation. Depending on the task you are going to achieve, you should decide
consciously which kind of normalization and pruning you apply to the original texts.
In many cases, using lemmas and lowercase words produces good embeddings for
similarity reasoning. Phrase detection can be helpful, not only to improve the result
but also to identify possibly important compound terms in your application domain.

We used Gensim to train, store, and analyze our embeddings. Gensim is very popular,
but you may also want to check possibly faster alternatives like (Py)Magnitude or
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finalfusion. Of course, you can also use TensorFlow and PyTorch to train different
kinds of embeddings.

Today, semantic embeddings are fundamental for all complex machine learning tasks.
However, for tasks such as sentiment analysis or paraphrase detection, you don’t need
embeddings for words but for sentences or complete documents. Many different
approaches have been published to create document embeddings (Wolf, 2018; Pala‐
chy, 2019). A common approach is to compute the average of the word vectors in a
sentence. Some of spaCy’s models include word vectors in their vocabulary and allow
the computation of document similarities based on average word vectors out of the
box. However, averaging word vectors only works reasonably well for single sentences
or very short documents. In addition, the whole approach is limited to the bag-of-
words idea where the word order is not considered.

State-of-the-art models utilize both the power of semantic embeddings and the word
order. We will use such a model in the next chapter for sentiment classification.
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CHAPTER 11

Performing Sentiment Analysis
on Text Data

In every interaction that we have in the real world, our brain subconsciously registers
feedback not just in the words said but also using facial expressions, body language,
and other physical cues. However, as more of our communication becomes digital, it
increasingly appears in the form of text, where we do not have the possibility of eval‐
uating physical cues. Therefore, it’s important to understand the mood or sentiment
felt by a person through the text they write in order to form a complete understand‐
ing of their message.

For example, a lot of customer support is now automated through the use of a soft‐
ware ticketing system or even an automated chatbot. As a result, the only way to
understand how a customer is feeling is by understanding the sentiment from their
responses. Therefore, if we are dealing with a particularly irate customer, it’s impor‐
tant to be extra careful with our responses to not annoy them further. Similarly, if we
want to understand what customers think about a particular product or brand, we
can analyze the sentiment from their posts, comments, or reviews about that brand in
social media channels and understand how they feel about the brand.

Understanding sentiment from text is challenging because there are several aspects
that need to be inferred that are not directly evident. A simple example is the follow‐
ing customer review for a laptop purchased on Amazon:

This laptop is full of series problem. Its speed is exactly as per specifications which is
very slow! Boot time is more.”

If a human were to read it, they could detect the irony expressed about the speed of
the laptop and the fact that it takes a long time to boot up, which leads us to conclude
that this is a negative review. However, if we analyze only the text, it’s clear that
the speed is exactly as specified. The fact that the boot time is high might also be
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perceived as a good thing unless we know that this is a parameter that needs to be
small. The task of sentiment analysis is also specific to the type of text data being
used. For example, a newspaper article is written in a structured manner, whereas
tweets and other social media text follow a loose structure with the presence of slang
and incorrect punctuation. As a result, there isn’t one blueprint that might work for
every scenario. Instead, we will present a set of blueprints that can be used to produce
a successful sentiment analysis.

What You’ll Learn and What We’ll Build
In this chapter, we will explore multiple techniques to estimate the sentiment from a
snippet of text data. We will start with simple rule-based techniques and work our
way through more complex methods, finally using state-of-the-art language models
such as BERT from Google. The purpose of walking through these techniques is to
improve our understanding of customer sentiment and provide you with a set of
blueprints that can be used for various use cases. For example, combined with the
Twitter API blueprint from Chapter 2, you could determine the public sentiment
about a certain personality or political issue. You could also use these blueprints
within your organization to analyze the sentiment in customer complaints or support
emails and determine how happy your clients are.

Sentiment Analysis
A lot of information is available in the form of text, and based on the context of the
communication, the information can be categorized into objective texts and subjec‐
tive texts. Objective texts contain a simple statement of facts, like we might find in a
textbook or Wikipedia article. Such texts generally present the facts and do not
express an opinion or sentiment. Subjective texts, on the other hand, convey some‐
one’s reaction or contain information about emotion, mood, or feelings. This might
be typically found in social media channels in tweets or where customers express
their opinions, such as in product reviews. We undertake a study of sentiment in
order to understand the state of mind of an individual expressed through the
medium of text. Therefore, sentiment analysis works best on subjective texts that
contain this kind of information rather than objective texts. Before starting our analy‐
sis, we must ensure that we have the right kind of dataset that captures the sentiment
information we are looking for.

The sentiment of a piece of text can be determined at the phrase, sentence, or docu‐
ment level. For example, if we take the case of a customer writing an email to a com‐
pany, there will be several paragraphs, with each paragraph containing multiple
sentences. Sentiment can be calculated for each sentence and also for each paragraph.
While paragraph 1 may be positive, paragraphs 3 and 4 could be negative. So, if
we want to determine the overall sentiment expressed by this customer, we would
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have to determine the best way to aggregate the sentiment for each paragraph up to
the document level. In the blueprints that we present, we calculate sentiment at a
sentence level.

The techniques for performing sentiment analysis can be broken down into simple
rule-based techniques and supervised machine learning approaches. Rule-based tech‐
niques are easier to apply since they do not require annotated training data. Super‐
vised learning approaches provide better results but include the additional effort of
labeling the data. There might be simple ways to work around this requirement as
we will show in our use case. In this chapter, we will provide the following set of
blueprints:

• Sentiment analysis using lexicon-based approaches
• Sentiment analysis by building additional features from text data and applying a

supervised machine learning algorithm
• Sentiment analysis using transfer learning technique and pretrained language

models like BERT

Introducing the Amazon Customer Reviews Dataset
Let’s assume you are an analyst working in the marketing department of a leading
consumer electronics company and would like to know how your smartphone prod‐
ucts compare with competitors. You can easily compare the technical specifications,
but it is more interesting to understand the consumer perception of the product. You
could determine this by analyzing the sentiment expressed by customers in product
reviews on Amazon. Using the blueprints and aggregating the sentiment for each
review for a brand, you would be able to identify how customers perceive each brand.
Similarly, what if your company is looking to expand their business by introducing
products in an adjacent category? You could analyze customer reviews for all prod‐
ucts in a segment, such as media tablets, smartwatches, or action cameras, and based
on the aggregated sentiment determine a segment with poor customer satisfaction
and therefore higher potential success of your product.

For our blueprints, we will use a dataset containing a collection of Amazon customer
reviews for different products across multiple product categories. This dataset of
Amazon customer reviews has already been scraped and compiled by researchers at
Stanford University.1 The last updated version consists of product reviews from the
Amazon website between 1996 and 2018 across several categories. It includes product
reviews, product ratings, and other information such as helpfulness votes and prod‐
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uct metadata. For our blueprints, we are going to focus on product reviews and use
only those that are one sentence long. This is to keep the blueprint simple and
remove the step of aggregation. A review containing multiple sentences can include
both positive and negative sentiment. Therefore, if we tag all sentences in a review
with the same sentiment, this would be incorrect. We only use data for some of the
categories so that it can fit in memory and reduce processing time. This dataset has
already been prepared, but you can refer to the Data_Preparation notebook present
in the repository to understand the steps and possibly extend it. The blueprints work
on any kind of dataset, and therefore if you have access to powerful hardware or
cloud infrastructure, then you can choose more categories.

Let’s now take a look at the dataset:

df = pd.read_json('reviews.json', lines=True)
df.sample(5)

Out:

 overall verified reviewerID asin text summary

163807 5 False A2A8GHFXUG1B28 B0045Z4JAI Good Decaf... it has a good flavour
for a decaf :)

Nice!

195640 5 True A1VU337W6PKAR3 B00K0TIC56 I could not ask for a better system
for my small greenhouse, easy to
set up and nozzles do very well

I could not ask for
a better system for
my small
greenhouse

167820 4 True A1Z5TT1BBSDLRM B0012ORBT6 good product at a good price and
saves a trip to the store

Four Stars

104268 1 False A4PRXX2G8900X B005SPI45U I like the principle of a raw chip -
something I can eat with my
homemade salsa and guac - but
these taste absolutely revolting.

No better
alternatives but
still tastes bad.

51961 1 True AYETYLNYDIS2S B00D1HLUP8 Fake China knockoff, you get what
you pay for.

Definitely not OEM

Looking at a summary of the dataset, we can see that it contains the following
columns:

Overall
This is the final rating provided by the reviewer to the product. Ranges from 1
(lowest) to 5 (highest).

Verified
This indicates whether the product purchase has been verified by Amazon.

ReviewerID
This is the unique identifier allocated by Amazon to each reviewer.
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ASIN
This is a unique product code that Amazon uses to identify the product.

Text
The actual text in the review provided by the user.

Summary
This is the headline or summary of the review that the user provided.

The column text contains the main content of the customer review and expresses the
user’s opinion. While the rest of the information can be useful, we will focus on using
this column in the blueprints.

Blueprint: Performing Sentiment Analysis Using
Lexicon-Based Approaches
As an analyst working on the Amazon customer reviews data, the first

challenge that might come up is the absence of target labels. We do not automatically
know whether a particular review is positive or negative. Does the text express happi‐
ness because the product worked perfectly or anger because the product has broken
at the first use? We cannot determine this until we actually read the review. This is
challenging because we would have to read close to 300,000 reviews and manually
assign a target sentiment to each of the reviews. We overcome this problem by using a
lexicon-based approach.

What is a lexicon? A lexicon is like a dictionary that contains a collection of words
and has been compiled using expert knowledge. The key differentiating factor for a
lexicon is that it incorporates specific knowledge and has been collected for a specific
purpose. We will use sentiment lexicons that contain commonly used words and cap‐
ture the sentiment associated with them. A simple example of this is the word happy,
with a sentiment score of 1, and another is the word frustrated, which would have a
score of -1. Several standardized lexicons are available for the English language, and
the popular ones are AFINN Lexicon, SentiWordNet, Bing Liu’s lexicon, and VADER
lexicon, among others. They differ from each other in the size of their vocabulary and
their representation. For example, the AFINN Lexicon comes in the form of a single
dictionary with 3,300 words, with each word assigned a signed sentiment score rang‐
ing from -3 to +3. Negative/positive indicate the polarity, and the magnitude indi‐
cates the strength. On the other hand, if we look at Bing Liu lexicon, it comes in the
form of two lists: one for positive words and another for negative, with a combined
vocabulary of 6,800 words. Most sentiment lexicons are available for English, but
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3 Yanqing Chen and Steven Skiena. Building Sentiment Lexicons for All Major Languages. Lexicons available on
Kaggle.

there are also lexicons available for German2 and for 81 other languages as generated
by this research paper.3

The sentiment of a sentence or phrase is determined by first identifying the sentiment
score for each word from the chosen lexicon and then adding them up to arrive at the
overall sentiment. By using this technique, we avoid the need to manually look at
each review and assign the sentiment label. Instead, we rely on the lexicon that pro‐
vides expert sentiment scores for each word. For our first blueprint, we will use the
Bing Liu lexicon, but you are free to extend the blueprint to use other lexicons as well.
The lexicons normally contain several variants of the word and exclude stop words,
and therefore the standard preprocessing steps are not essential in this approach.
Only those words that are present in the lexicon will actually be scored. This also
leads to one of the disadvantages of this method, which we will discuss at the end of
the blueprint.

Bing Liu Lexicon
The Bing Liu lexicon has been compiled by dividing the words into those that express
positive opinion and those that express negative opinion. This lexicon also contains
misspelled words and is more suitable to be used on text that has been extracted from
online discussion forums, social media, and other such sources and should therefore
produce better results on the Amazon customer reviews data.

The Bing Liu lexicon is available from the authors’ website as a zip file that contains a
set of positive and negative words. It is also available within the NLTK library as a
corpus that we can use after downloading. Once we have extracted the lexicon, we
will create a dictionary that can hold the lexicon words and their corresponding sen‐
timent score. Our next step is to generate the score for each review in our dataset. We
convert the contents of text to lowercase first; then using the word_tokenize function
from the NLTK package, we split the sentence into words and check whether this
word is part of our lexicon, and if so, we add the corresponding sentiment score of
the word to the total sentiment score for the review. As the final step, we normalize
this score based on the number of words in the sentence. This functionality is encap‐
sulated in the function bing_liu_score and is applied to every review in our dataset:

from nltk.corpus import opinion_lexicon
from nltk.tokenize import word_tokenize
nltk.download('opinion_lexicon')
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print('Total number of words in opinion lexicon', len(opinion_lexicon.words()))
print('Examples of positive words in opinion lexicon',
      opinion_lexicon.positive()[:5])
print('Examples of negative words in opinion lexicon',
      opinion_lexicon.negative()[:5])

Out:

Total number of words in opinion lexicon 6789
Examples of positive words in opinion lexicon ['a+', 'abound', 'abounds',
'abundance', 'abundant']
Examples of negative words in opinion lexicon ['2-faced', '2-faces',
'abnormal', 'abolish', 'abominable']

Then:
# Let's create a dictionary which we can use for scoring our review text
df.rename(columns={"reviewText": "text"}, inplace=True)
pos_score = 1
neg_score = -1
word_dict = {}

# Adding the positive words to the dictionary
for word in opinion_lexicon.positive():
        word_dict[word] = pos_score

# Adding the negative words to the dictionary
for word in opinion_lexicon.negative():
        word_dict[word] = neg_score

def bing_liu_score(text):
    sentiment_score = 0
    bag_of_words = word_tokenize(text.lower())
    for word in bag_of_words:
        if word in word_dict:
            sentiment_score += word_dict[word]
    return sentiment_score / len(bag_of_words)

df['Bing_Liu_Score'] = df['text'].apply(bing_liu_score)
df[['asin','text','Bing_Liu_Score']].sample(2)

Out:

 asin text Bing_Liu_Score

188097 B00099QWOU As expected 0.00

184654 B000RW1XO8 Works as designed... 0.25

Now that we have calculated the sentiment score, we would like to check whether the
calculated score matches the expectation based on the rating provided by the cus‐
tomer. Instead of checking this for each review, we could compare the sentiment
score across reviews that have different ratings. We would expect that a review that
has a five-star rating would have a higher sentiment score than a review with a one-
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star rating. In the next step, we scale the score for each review between 1 and -1 and
compute the average sentiment scores across all reviews for each type of star rating:

df['Bing_Liu_Score'] = preprocessing.scale(df['Bing_Liu_Score'])
df.groupby('overall').agg({'Bing_Liu_Score':'mean'})

Out:

overall Bing_Liu_Score

1 -0.587061

2 -0.426529

4 0.344645

5 0.529065

The previous blueprint allows us to use any kind of sentiment lexicon to quickly
determine a sentiment score and can also serve as a baseline to compare other sophis‐
ticated techniques, which should improve the accuracy of sentiment prediction.

Disadvantages of a Lexicon-Based Approach
While the lexicon-based approach is simple, it has some obvious disadvantages that
we observed:

• First, we are bound by the size of the lexicon; if a word does not exist in the
chosen lexicon, then we are unable to use this information while determining the
sentiment score for this review. In the ideal scenario, we would like to use a lexi‐
con that captures all the words in the language, but this is not feasible.

• Second, we assume that the chosen lexicon is a gold standard and trust the senti‐
ment score/polarity provided by the author(s). This is a problem because a par‐
ticular lexicon may not be the right fit for a given use case. In the previous
example, the Bing Liu lexicon is relevant because it captures the online usage of
language and includes common typos and slang in its lexicon. But if we were
working on a dataset of tweets, then the VADER lexicon would be better suited
since it includes support for popular acronyms (e.g., LOL) and emojis.

• Finally, one of the biggest disadvantages of lexicons is that they overlook nega‐
tion. Since the lexicon only matches words and not phrases, this would result in
a negative score for a sentence that contains not bad when it actually is more
neutral.

To improve our sentiment detection, we must explore the use of supervised machine
learning approaches.
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Supervised Learning Approaches
The use of a supervised learning approach is beneficial because it allows us to model
the patterns in the data and create a prediction function that is close to reality. It also
gives us the flexibility to choose from different techniques and identify the one that
provides maximum accuracy. A more detailed overview of supervised machine learn‐
ing is provided in Chapter 6.

To use such an approach, we would need labeled data that may not be easily available.
Often, it involves two or more human annotators looking at each review and deter‐
mining the sentiment. If the annotators do not agree, then a third annotator might be
needed to break the deadlock. It is common to have five annotators, with three of
them agreeing on the opinion to confirm the label. This can be tedious and expensive
but is the preferred approach when working with real business problems.

However, in many cases we will be able to test a supervised learning approach
without going through the expensive labeling process. A simpler option is to check
for any proxy indicators within the data that might help us annotate it automatically.
Let’s illustrate this in the case of the Amazon reviews. If somebody has given a five-
star product rating, then we can assume that they liked the product they used, and
this should be reflected in their review. Similarly, if somebody has provided a one-star
rating for a product, then they are dissatisfied with it and would have some negative
things to say. Therefore, we could use the product rating as a proxy measure of
whether a particular review would be positive or negative. The higher the rating, the
more positive a particular review should be.

Preparing Data for a Supervised Learning Approach
Therefore, as the first step in converting our dataset into a supervised machine learn‐
ing problem, we will automatically annotate our reviews using the rating. We have
chosen to annotate all reviews with a rating of 4 and 5 as positive and with ratings
1 and 2 as negative based on the reasoning provided earlier. In the data preparation
process, we also filtered out reviews with a rating of 3 to provide a clearer separation
between positive and negative reviews. This step can be tailored based on your
use case.

df = pd.read_json('reviews.json', lines=True)

# Assigning a new [1,0] target class label based on the product rating
df['sentiment'] = 0
df.loc[df['overall'] > 3, 'sentiment'] = 1
df.loc[df['overall'] < 3, 'sentiment'] = 0

# Removing unnecessary columns to keep a simple DataFrame
df.drop(columns=[
    'reviewTime', 'unixReviewTime', 'overall', 'reviewerID', 'summary'],

Supervised Learning Approaches | 303



        inplace=True)
df.sample(3)

Out:

 verified asin text sentiment

176400 True B000C5BN72 everything was as listed and is in use all appear to be in good working
order

1

65073 True B00PK03IVI this is not the product i received. 0

254348 True B004AIKVPC Just like the dealership part. 1

As you can see from the selection of reviews presented, we have created a new col‐
umn named sentiment that contains a value of 1 or 0 depending on the rating pro‐
vided by the user. We can now treat this as a supervised machine learning problem
where we will use the content present in text to predict the sentiment: positive (1) or
negative (0).

Blueprint: Vectorizing Text Data and Applying a
Supervised Machine Learning Algorithm
In this blueprint, we will build a supervised machine learning algorithm

by first cleaning the text data, then performing vectorization, and finally applying a
support vector machine model for the classification.

Step 1: Data Preparation
To preprocess the data, we will apply the regex blueprint from Chapter 4 to remove
any special characters, HTML tags, and URLs:

df['text_orig'] = df['text'].copy()
df['text'] = df['text'].apply(clean)

Then, we will apply the data preparation blueprint from the same chapter that uses
the spaCy pipeline. This ensures that the text is standardized to lowercase, does not
include numerals and punctuations, and is in a format that can be used by subsequent
steps. Please note that it might take a couple of minutes to complete execution. In a
few cases, it’s possible that all tokens in a review are removed during the cleaning
step, and it doesn’t make sense to include such reviews anymore:

df["text"] = df["text"].apply(clean_text)

# Remove observations that are empty after the cleaning step
df = df[df['text'].str.len() != 0]
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Step 2: Train-Test Split
We split the data so that the next step of vectorization is performed using only the
training dataset. We create an 80-20 split of the data and confirm that the positive and
negative classes show a similar distribution across the two splits by specifying the tar‐
get variable, sentiment, as the stratify argument:

from sklearn.model_selection import train_test_split
X_train, X_test, Y_train, Y_test = train_test_split(df['text'],
                                                    df['sentiment'],
                                                    test_size=0.2,
                                                    random_state=42,
                                                    stratify=df['sentiment'])

print ('Size of Training Data ', X_train.shape[0])
print ('Size of Test Data ', X_test.shape[0])

print ('Distribution of classes in Training Data :')
print ('Positive Sentiment ', str(sum(Y_train == 1)/ len(Y_train) * 100.0))
print ('Negative Sentiment ', str(sum(Y_train == 0)/ len(Y_train) * 100.0))

print ('Distribution of classes in Testing Data :')
print ('Positive Sentiment ', str(sum(Y_test == 1)/ len(Y_test) * 100.0))
print ('Negative Sentiment ', str(sum(Y_test == 0)/ len(Y_test) * 100.0))

Out:

Size of Training Data  234108
Size of Test Data  58527
Distribution of classes in Training Data :
Positive Sentiment  50.90770071932612
Negative Sentiment  49.09229928067388
Distribution of classes in Testing Data :
Positive Sentiment  50.9081278726058
Negative Sentiment  49.09187212739419

Step 3: Text Vectorization
The next step is where we convert the cleaned text to usable features. Machine learn‐
ing models do not understand text data and are capable of working only with
numeric data. We reuse the TF-IDF vectorization blueprint from Chapter 5 to create
the vectorized representation. We select the parameters of min_df as 10 and do not
include bigrams. In addition, our previous step has already removed stop words, and
therefore we do not need to take care of this during vectorization. We will use the
same vectorizer to transform the test split, which will be used during evaluation:

from sklearn.feature_extraction.text import TfidfVectorizer

tfidf = TfidfVectorizer(min_df = 10, ngram_range=(1,1))
X_train_tf = tfidf.fit_transform(X_train)
X_test_tf = tfidf.transform(X_test)
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Step 4: Training the Machine Learning Model
As described in Chapter 6, support vector machines are the preferred machine learn‐
ing algorithms when working with text data. SVMs are known to work well with
datasets with a large number of numeric features, and in particular the LinearSVC
module we use is quite fast. We can also select tree-based methods like random forest
or XGBoost, but in our experience the accuracy is comparable, and thanks to quick
training times, experimentation can be faster:

from sklearn.svm import LinearSVC

model1 = LinearSVC(random_state=42, tol=1e-5)
model1.fit(X_train_tf, Y_train)

Out:

LinearSVC(C=1.0, class_weight=None, dual=True, fit_intercept=True,
          intercept_scaling=1, loss='squared_hinge', max_iter=1000,
          multi_class='ovr', penalty='l2', random_state=42, tol=1e-05,
          verbose=0)

Then:

from sklearn.metrics import accuracy_score
from sklearn.metrics import roc_auc_score

Y_pred = model1.predict(X_test_tf)
print ('Accuracy Score - ', accuracy_score(Y_test, Y_pred))
print ('ROC-AUC Score - ', roc_auc_score(Y_test, Y_pred))

Out:

Accuracy Score -  0.8658396979172006
ROC-AUC Score -  0.8660667427476778

As we can see, this model achieves an accuracy of around 86%. Let’s look at some of
the model predictions and the review text to perform a sense check of the model:

sample_reviews = df.sample(5)
sample_reviews_tf = tfidf.transform(sample_reviews['text'])
sentiment_predictions = model1.predict(sample_reviews_tf)
sentiment_predictions = pd.DataFrame(data = sentiment_predictions,
                                     index=sample_reviews.index,
                                     columns=['sentiment_prediction'])
sample_reviews = pd.concat([sample_reviews, sentiment_predictions], axis=1)
print ('Some sample reviews with their sentiment - ')
sample_reviews[['text_orig','sentiment_prediction']]

Out:

Some sample reviews with their sentiment -
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 text_orig sentiment_prediction

29500 Its a nice night light, but not much else apparently! 1

98387 Way to small, do not know what to do with them or how to use them 0

113648 Didn’t make the room “blue” enough - returned with no questions asked 0

281527 Excellent 1

233713 fit like oem and looks good 1

We can see that this model is able to predict the reviews reasonably well. For example,
review 98387 where the user found the product to be too small and unusable is
marked as negative. Consider review 233713 where the user says that the product was
fitting well and looks good is marked as positive. How does the model compare with
a baseline that uses the Bing Liu lexicon?

def baseline_scorer(text):
    score = bing_liu_score(text)
    if score > 0:
        return 1
    else:
        return 0

Y_pred_baseline = X_test.apply(baseline_scorer)
acc_score = accuracy_score(Y_pred_baseline, Y_test)
print (acc_score)

Out:

0.7521998393903668

It does provide an uplift on the lexicon baseline of 75%, and while the accuracy can
be improved further, this is a simple blueprint that provides quick results. For exam‐
ple, if you’re looking to determine the customer perception of your brand versus
competitors, then using this blueprint and aggregating sentiments for each brand will
give you a fair understanding. Or let’s say you want to create an app that helps people
decide whether to watch a movie. Using this blueprint on data collected from Twitter
or YouTube comments, you could determine whether people feel more positively or
negatively and use that to provide a suggestion. In the next blueprint, we will describe
a more sophisticated technique that can be used to improve the accuracy.

Pretrained Language Models Using Deep Learning
Languages have evolved over centuries and are still continuously changing. While
there are rules of grammar and guidelines to forming sentences, these are often not
strictly followed and depend heavily on context. The words that a person chooses
while tweeting would be quite different when writing an email to express the same
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thought. And in many languages (including English) the exceptions to the rules are
far too many! As a result, it is difficult for a computer program to understand text-
based communication. This can be overcome by giving algorithms a deeper language
understanding by making use of language models.

Language models are a mathematical representation of natural language that allows
us to understand the structure of a sentence and the words in it. There are several
types of language models, but we will focus on the use of pretrained language models
in this blueprint. The most important characteristic of these language models is that
they make use of deep neural network architectures and are trained on a large corpus
of data. The use of language models greatly improves the performance of NLP tasks
such as language translation, automatic spelling correction, and text summarization.

Deep Learning and Transfer Learning
Deep learning is commonly used to describe a set of machine learning methods that
leverage artificial neural networks (ANNs). ANNs were inspired by the human brain
and try to mimic the connections and information processing activity between neu‐
rons in biological systems. Simply explained, it tries to model a function using an
interconnected network of nodes spanning several layers with the weights of the net‐
work edges learned with the help of data. For a more detailed explanation, please
refer to Section II of Hands-On Machine Learning (O’Reilly, 2019) by Aurélien Géron.

Transfer learning is a technique within deep learning that allows us to benefit from
pretrained, widely available language models by transferring a model to our specific
use case. It gives us the ability to use the knowledge and information obtained in one
task and apply it to another problem. As humans, we are good at doing this. For
example, we initially learn to play the guitar but can then relatively easily apply that
knowledge to pick up the cello or harp more quickly (than a complete beginner).
When the same concepts are applied with regard to a machine learning algorithm,
then it’s referred to as transfer learning.

This idea was first popularized in the computer vision industry, where a large-scale
image recognition challenge led to several research groups competing to build com‐
plex neural networks that are several layers deep to reduce the error on the challenge.
Other researchers discovered that these complex models work well not just for that
challenge but also on other image recognition tasks with small tweaks. These large
models had already learned basic features about images (think of edges, shapes, etc.)
and could be fine-tuned for the specific application without the need to train from
scratch. In the last two years, the same techniques have been successfully applied to
text analytics. First, a deep neural network is trained on a large text corpus (often
derived from publicly available data sources like Wikipedia). The chosen model
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4 Ashish Vaswani et al. “Attention Is All You Need.” 2017. https://arxiv.org/abs/1706.03762.

architecture is a variant of LSTM or Transformer.4 When training these models, one
word is removed (masked) in the sentence, and the prediction task is to determine
the masked word given all the other words in the sentence. To go back to our human
analogy, there might be far more YouTube videos that teach you how to play the gui‐
tar than the harp or cello. Therefore, it would be beneficial to first learn to play the
guitar because of the large number of resources available and then apply this knowl‐
edge to a different task, like playing the harp or cello.

Such large models take a lot of time to train and can be time-consuming. Fortunately,
many research groups have made such pretrained models publicly available, includ‐
ing ULMFiT from fastai, BERT from Google, GPT-2 from OpenAI, and Turing from
Microsoft. Figure 11-1 shows the final step of applying transfer learning, where the
initial layers of the pretrained models are kept fixed, and the final layers of the model
are retrained to better suit the task at hand. In this way, we can apply a pretrained
model to specific tasks such as text classification and sentiment analysis.

Figure 11-1. Transfer learning. The parameters of earlier layers in the network are
learned by training the model on the large corpus, and the parameters of the final layers
are unfrozen and allowed to be fine-tuned during the training on the specific dataset.

For our blueprint we will use the BERT pretrained model released by Google. BERT is
an acronym for Bidirectional Encoder Representations from Transformers. It uses the 
Transformers architecture and trains a model using a large corpus of text data. The
model that we use in this blueprint (bert-base-uncased) is trained on the combined
English Wikipedia and Books corpus using a Masked Language Model (MLM). There
are other versions of the BERT model that can be trained on different corpora. For
example, there is a BERT model trained on German Wikipedia articles. The masked
language model randomly masks (hides) some of the tokens from the input, and the
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objective is to predict the original vocabulary ID of the masked word based only on
its context (surrounding words). Since it’s bidirectional, the model looks at each sen‐
tence in both directions and is able to understand context better. In addition, BERT
also uses subwords as tokens, which provides more granularity when identifying the
meaning of a word. Another advantage is that BERT generates context-aware embed‐
dings. For example, depending on the surrounding words in a sentence where the
word cell is used, it can have a biological reference or actually refer to a prison cell.
For a much more detailed understanding of how BERT works, please see “Further
Reading” on page 320.

Blueprint: Using the Transfer Learning Technique
and a Pretrained Language Model
This blueprint will show you how we can leverage pretrained language

models to perform sentiment classification. Consider the use case where you would
like to take action based on the sentiment expressed. For example, if a customer is
particularly unhappy, you would like to route them to your best customer service rep‐
resentative. It’s important that you are able to detect the sentiment accurately or else
you risk losing them. Or let’s say you are a small business that relies heavily on
reviews and ratings on public websites like Yelp. To improve your ratings, you would
like to follow up with unhappy customers by offering them coupons or special serv‐
ices. It’s important to be accurate so that you target the right customers. In such use
cases, we may not have a lot of data to train the model, but having a high accuracy is
important. We know that sentiment is influenced by the context in which a word is
used, and the use of a pretrained language model can improve our sentiment predic‐
tions. This gives us the ability to go beyond the limited dataset that we have to incor‐
porate knowledge from general usage.

In our blueprint we will use the Transformers library because of its easy-to-use func‐
tionality and wide support for multiple pretrained models. “Choosing the Transform‐
ers Library” provides more details about this topic. The Transformers library is
continuously updated, with multiple researchers contributing.

Choosing the Transformers Library
While there are several excellent deep learning models produced by multiple research
groups, at this point in time they are fragmented and not compatible across different
frameworks. For example, the BERT model was developed by the Google research
team primarily on TensorFlow and does not work automatically on PyTorch. So if
someone is more comfortable using PyTorch, they will need to port/rewrite all of this
code. The deep learning models also do not use a standard input format and other
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naming conventions, which makes a standardized approach much more difficult.
This is where the Transformers library by Hugging Face comes in. There are two pri‐
mary advantages in making use of this library:

• The Transformers library allows us to easily choose between different pretrained
models by just changing a parameter value. Most of the benchmark models
developed in the last two years, like BERT and GPT-2, are already implemented
and available.

• It works in PyTorch and TensorFlow. These are the two most popular deep learn‐
ing frameworks as of 2020, and the Transformers library gives us the ability to
choose either of them as the underlying processing framework.

The Transformers library has provided a standardized approach to reuse all the mod‐
els with minimum effort and code changes. Our blueprint will make use of this
library to choose a BERT pretrained model, fine-tune the training on the Amazon
reviews dataset, and then evaluate the result. We have put together this blueprint by
using the SST-2 task example provided in the Transformers repository and the pri‐
mary trainer class implementation.

Step 1: Loading Models and Tokenization
The first step when using the Transformers library is to import the three classes
needed for the chosen model. This includes the config class, used to store important
model parameters; the tokenizer, to tokenize and prepare the text for model training;
and the model class, which defines the model architecture and weights. These classes
are specific to the model architecture, and if we want to use a different architecture,
then the appropriate classes need to be imported instead. We instantiate these classes
from a pretrained model and choose the smallest BERT model, bert-base-uncased,
which is 12 layers deep and contains 110 million parameters!

The advantage of using the Transformers library is that it already provides multiple
pretrained models for many model architectures, which you can check here. When
we instantiate a model class from a pretrained model, the model architecture and
weights are downloaded from an AWS S3 bucket hosted by Hugging Face. This might
take a while the first time, but it is then cached on your machine, which removes the
need for subsequent downloads. Note that since we are using the pretrained model to
predict the sentiment (positive versus negative), we specify finetuning_task='bi
nary'. We have provided additional instructions in the accompanying notebook to
ensure that additional Python packages are installed before running this blueprint.

from transformers import BertConfig, BertTokenizer, BertForSequenceClassification

config = BertConfig.from_pretrained('bert-base-uncased',finetuning_task='binary')
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tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
model = BertForSequenceClassification.from_pretrained('bert-base-uncased')

We have to transform the input text data into a standard format required by the
model architecture. We define a simple get_tokens method to convert the raw text of
our reviews to numeric values. The pretrained model accepts each observation as a
fixed length sequence. So, if an observation is shorter than the maximum sequence
length, then it is padded with empty (zero) tokens, and if it’s longer, then it is trunca‐
ted. Each model architecture has a maximum sequence length that it supports. The
tokenizer class provides a tokenize function that splits the sentence to tokens, pads
the sentence to create the fixed-length sequence, and finally represents it as a numeri‐
cal value that can be used during model training. This function also adds an attention
mask to differentiate those positions where we have actual words from those that
contain padding characters. Here is an example of how this process works:

def get_tokens(text, tokenizer, max_seq_length, add_special_tokens=True):
  input_ids = tokenizer.encode(text,
                               add_special_tokens=add_special_tokens,
                               max_length=max_seq_length,
                               pad_to_max_length=True)
  attention_mask = [int(id > 0) for id in input_ids]
  assert len(input_ids) == max_seq_length
  assert len(attention_mask) == max_seq_length
  return (input_ids, attention_mask)

text = "Here is the sentence I want embeddings for."
input_ids, attention_mask = get_tokens(text,
                                       tokenizer,
                                       max_seq_length=30,
                                       add_special_tokens = True)
input_tokens = tokenizer.convert_ids_to_tokens(input_ids)
print (text)
print (input_tokens)
print (input_ids)
print (attention_mask)

Out:

Here is the sentence I want embeddings for.
['[CLS]', 'here', 'is', 'the', 'sentence', 'i', 'want', 'em', '##bed',
'##ding', '##s', 'for', '.', '[SEP]', '[PAD]', '[PAD]', '[PAD]', '[PAD]',
'[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]',
'[PAD]', '[PAD]', '[PAD]', '[PAD]']
[101, 2182, 2003, 1996, 6251, 1045, 2215, 7861, 8270, 4667, 2015, 2005, 1012,
102, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0]

The first token that we observe is the [CLS] token, which stands for classification,
which is one of the pretraining tasks of the BERT model. This token is used to iden‐
tify the start of a sentence and stores the aggregated representation of the entire sen‐
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tence within the model. We also see the [SEP] token at the end of the sentence, which
stands for separator. When BERT is used for nonclassification tasks like language
translation, each observation would include a pair of texts (for example, text in
English and text in French), and the [SEP] token is used to separate the first text from
the second. However, since we are building a classification model, the separator token
is followed by [PAD] tokens. We specified the sequence length to be 30, and since our
test observation was not that long, multiple padding tokens have been added at the
end. Another interesting observation is that a word like embedding is not one token
but actually split into em, ##bed, ##ding, and ##s. The ## is used to identify tokens
that are subwords, which is a special characteristic of the BERT model. This allows
the model to have a better distinction between root words, prefixes, and suffixes and
also try to infer the meaning of words that it may not have seen before.

An important point to note is that since deep learning models use a context-based
approach, it is advisable to use the text in the original form without any preprocess‐
ing, thus allowing the tokenizer to produce all possible tokens from its vocabulary. As
a result, we must split the data again using the original text_orig column rather than
the cleaned text column. After that, let’s apply the same function to our train and test
data and this time use a max_seq_length of 50:

X_train, X_test, Y_train, Y_test = train_test_split(df['text_orig'],
                                                    df['sentiment'],
                                                    test_size=0.2,
                                                    random_state=42,
                                                    stratify=df['sentiment'])
X_train_tokens = X_train.apply(get_tokens, args=(tokenizer, 50))
X_test_tokens = X_test.apply(get_tokens, args=(tokenizer, 50))

Deep learning models are trained on GPUs using frameworks like TensorFlow and
PyTorch. A tensor is the basic data structure used by these frameworks to represent
and work with data and can store data in N dimensions. A simple way to visualize a
tensor is by drawing an analogy with a chessboard. Let’s suppose that we mark an
unoccupied position with 0, a position occupied by a white piece with 1, and a posi‐
tion occupied by a black piece with 2. We get an 8 × 8 matrix denoting the status of
the chessboard at a given point in time. If we now want to track and store this over
several moves, then we get multiple 8 × 8 matrices, which can be stored in what we
call a tensor. Tensors are n-dimensional representations of data, containing an array
of components that are functions of the coordinates of a space. The tensor that tracks
the historical chess moves would be a rank 3 tensor, whereas the initial 8 × 8 matrix
could also be considered a tensor, but with rank 2.

This is a simplistic explanation, but to get a more in-depth understanding, we would 
recommend reading “An Introduction to Tensors for Students of Physics and Engi‐
neering” by Joseph C. Kolecki. In our case, we create three tensors that contain the
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tokens (tensors containing multiple arrays of size 50), input masks (tensors contain‐
ing arrays of size 50), and target labels (tensors containing scalars of size 1):

import torch
from torch.utils.data import TensorDataset

input_ids_train = torch.tensor(
    [features[0] for features in X_train_tokens.values], dtype=torch.long)
input_mask_train = torch.tensor(
    [features[1] for features in X_train_tokens.values], dtype=torch.long)
label_ids_train = torch.tensor(Y_train.values, dtype=torch.long)

print (input_ids_train.shape)
print (input_mask_train.shape)
print (label_ids_train.shape)

Out:

torch.Size([234104, 50])
torch.Size([234104, 50])
torch.Size([234104])

We can take a peek at what is in this tensor and see that it contains a mapping to the
BERT vocabulary for each of the tokens in a sentence. The number 101 indicates the
start, and 102 indicates the end of the review sentence. We combine these tensors
together into a TensorDataset, which is the basic data structure used to load all obser‐
vations during model training:

input_ids_train[1]

Out:

tensor([ 101, 2009, 2134, 1005, 1056, 2147, 6314, 2055, 2009, 1037, 5808, 1997,
        2026, 2769,  102,    0,    0,    0,    0,    0,    0,    0,    0,    0,
           0,    0,    0,    0,    0,    0,    0,    0,    0,    0,    0,    0,
           0,    0,    0,    0,    0,    0,    0,    0,    0,    0,    0,    0,
           0,    0])

Then:

train_dataset = TensorDataset(input_ids_train,input_mask_train,label_ids_train)

Step 2: Model Training
Now that we have preprocessed and tokenized the data, we are ready to train the
model. Because of the large memory usage and computation demands of deep learn‐
ing models, we follow a different approach compared to the SVM model used in the
previous blueprint. All training observations are split into batches (defined by
train_batch_size and randomly sampled from all observations using RandomSam
pler) and passed forward through the layers of the model. When the model has seen
all the training observations by going through the batches, it is said to have been
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5 Robin M. Schmidt, Frank Schneider, and Phillipp Hennig. “Descending through a Crowded Valley: Bench‐
marking Deep Learning Optimizers.” 2020. https://arxiv.org/pdf/2007.01547.pdf.

trained for one epoch. An epoch is therefore one pass through all the observations in
the training data. The combination of batch_size and number of epochs determines
how long the model takes to train. Choosing a larger batch_size reduces the number
of forward passes in an epoch but might result in higher memory consumption.
Choosing a larger number of epochs gives the model more time to learn the right
value of the parameters but will also result in a longer training time. For this blue‐
print we have defined batch_size to be 64 and num_train_epochs to be 2:

from torch.utils.data import DataLoader, RandomSampler

train_batch_size = 64
num_train_epochs = 2

train_sampler = RandomSampler(train_dataset)
train_dataloader = DataLoader(train_dataset,
                              sampler=train_sampler,
                              batch_size=train_batch_size)
t_total = len(train_dataloader) // num_train_epochs

print ("Num examples = ", len(train_dataset))
print ("Num Epochs = ", num_train_epochs)
print ("Total train batch size  = ", train_batch_size)
print ("Total optimization steps = ", t_total)

Out:

Num examples =  234104
Num Epochs =  2
Total train batch size  =  64
Total optimization steps =  1829

When all the observations in one batch have passed forward through the layers of the
model, the backpropagation algorithm is applied in the backward direction. This
technique allows us to automatically compute the gradients for each parameter in the
neural network, giving us a way to tweak the parameters to reduce the error. This is
similar to how stochastic gradient descent works, but we do not attempt a detailed
explanation. Chapter 4 of Hands-On Machine Learning (O’Reilly, 2019) provides a
good introduction and mathematical explanation. The key thing to note is that when
training a deep learning algorithm, parameters that influence backpropagation like
the learning rate and choice of optimizer determine how quickly the model is able
to learn the parameters and reach higher accuracies. However, there isn’t a scientific
reason for why a certain method or value is better, but a lot of researchers5 attempt to
determine what the best options could be. We make informed choices for the blue‐
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print based on the parameters in the BERT paper and recommendations in the Trans‐
formers library, as shown here:

from transformers import AdamW, get_linear_schedule_with_warmup

learning_rate = 1e-4
adam_epsilon = 1e-8
warmup_steps = 0

optimizer = AdamW(model.parameters(), lr=learning_rate, eps=adam_epsilon)
scheduler = get_linear_schedule_with_warmup(optimizer,
                                            num_warmup_steps=warmup_steps,
                                            num_training_steps=t_total)

Before setting up the training loop, we check whether a GPU is available (see “Using
GPUs for Free with Google Colab”). If so, the model and input data are transferred to
the GPU, and then we set up the forward pass by running the inputs through the
model to produce outputs. Since we have specified the labels, we already know the
deviation from actual (loss), and we adjust the parameters using backpropagation
that calculates gradients. The optimizer and scheduler steps are used to determine the
amount of parameter adjustment. Note the special condition to clip the gradients to a
max value to prevent the problem of exploding gradients.

Using GPUs for Free with Google Colab
One of the primary drivers for the popularity of neural network architectures and the
success of models like BERT has been the use of graphics processing units (GPUs).
The use of a GPU allows parallel operations, specifically matrix multiplication that a
deep neural network relies on. This gives us the capability to train complex neural
network architectures with multiple layers that a CPU can never provide. If your lap‐
top or desktop does not come with one of the latest (NVIDIA) GPUs, this makes it
harder to experiment with these pretrained models, and one has to choose cloud pro‐
viders like AWS and rent a machine with GPU on a usage basis.

But with Google Colab (Colaboratory), we have a free alternative. Google Colab is a
Jupyter notebook type of environment that runs on Google Cloud. One can access it
via a browser, just like Jupyter notebooks, and run commands in a cell interface. The
biggest advantage is that you can change the runtime environment to a GPU, and all
the code will execute using a GPU for free. There are limitations to how long you can
run your notebook with the free option, but it also comes with a paid monthly sub‐
scription that enhances these limits.

To use this, you must have a Google account and then log in at https://
colab.research.google.com, create a new notebook, and then choose Edit > Runtime
Settings. From the drop-down for Hardware Accelerator, choose GPU. Once you are
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finished running your code, you can also save this notebook to your Google Drive or
download it as a Jupyter notebook.

We will now wrap all these steps in nested for loops—one for each epoch and
another for each batch in the epoch—and use the TQDM library introduced earlier to
keep track of the training progress while printing the loss value:

from tqdm import trange, notebook

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
train_iterator = trange(num_train_epochs, desc="Epoch")

# Put model in 'train' mode
model.train()

for epoch in train_iterator:
    epoch_iterator = notebook.tqdm(train_dataloader, desc="Iteration")
    for step, batch in enumerate(epoch_iterator):

        # Reset all gradients at start of every iteration
        model.zero_grad()

        # Put the model and the input observations to GPU
        model.to(device)
        batch = tuple(t.to(device) for t in batch)

        # Identify the inputs to the model
        inputs = {'input_ids':      batch[0],
                  'attention_mask': batch[1],
                  'labels':         batch[2]}

        # Forward Pass through the model. Input -> Model -> Output
        outputs = model(**inputs)

        # Determine the deviation (loss)
        loss = outputs[0]
        print("\r%f" % loss, end='')

        # Back-propogate the loss (automatically calculates gradients)
        loss.backward()

        # Prevent exploding gradients by limiting gradients to 1.0
        torch.nn.utils.clip_grad_norm_(model.parameters(), 1.0)

        # Update the parameters and learning rate
        optimizer.step()
        scheduler.step()

The steps we have performed up to now have fine-tuned the parameters of the BERT
model that we downloaded to fit the sentiment analysis of the Amazon customer
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reviews. If the model is learning the parameter values correctly, you should observe
that the loss value reduces over multiple iterations. At the end of the training step, we
can save the model and tokenizer into a chosen output folder:

model.save_pretrained('outputs')

Step 3: Model Evaluation
Evaluating our model on the test data is similar to the training steps, with only minor
differences. First, we have to evaluate the entire test dataset and therefore don’t need
to make random samples; instead, we use the SequentialSampler class to load obser‐
vations. However, we are still constrained by the number of observations we can load
at a time and therefore must use test_batch_size to determine this. Second, we do
not need a backward pass or adjustment of parameters and only perform the forward
pass. The model provides us with output tensors that contain the value of loss and
output probabilities. We use the np.argmax function to determine the output label
with maximum probability and calculate the accuracy by comparing with actual
labels:

import numpy as np
from torch.utils.data import SequentialSampler

test_batch_size = 64
test_sampler = SequentialSampler(test_dataset)
test_dataloader = DataLoader(test_dataset,
                             sampler=test_sampler,
                             batch_size=test_batch_size)

# Load the pretrained model that was saved earlier
# model = model.from_pretrained('/outputs')

# Initialize the prediction and actual labels
preds = None
out_label_ids = None

# Put model in "eval" mode
model.eval()

for batch in notebook.tqdm(test_dataloader, desc="Evaluating"):

    # Put the model and the input observations to GPU
    model.to(device)
    batch = tuple(t.to(device) for t in batch)

    # Do not track any gradients since in 'eval' mode
    with torch.no_grad():
        inputs = {'input_ids':      batch[0],
                  'attention_mask': batch[1],
                  'labels':         batch[2]}
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        # Forward pass through the model
        outputs = model(**inputs)

        # We get loss since we provided the labels
        tmp_eval_loss, logits = outputs[:2]

        # There maybe more than one batch of items in the test dataset
        if preds is None:
            preds = logits.detach().cpu().numpy()
            out_label_ids = inputs['labels'].detach().cpu().numpy()
        else:
            preds = np.append(preds, logits.detach().cpu().numpy(), axis=0)
            out_label_ids = np.append(out_label_ids,
                                      inputs['labels'].detach().cpu().numpy(),
                                      axis=0)

# Get final loss, predictions and accuracy
preds = np.argmax(preds, axis=1)
acc_score = accuracy_score(preds, out_label_ids)
print ('Accuracy Score on Test data ', acc_score)

Out:

Accuracy Score on Test data  0.9535086370393152

The results for our test data show an increase in model accuracy to 95%—a 10 per‐
centage point jump compared to our previous baseline with TF-IDF and SVM. These
are the benefits of using a state-of-the-art language model and is most likely a result
of BERT being trained using a large corpus of data. The reviews are quite short, and
the earlier model has only that data to learn a relationship. BERT, on the other hand,
is context aware and can transfer the prior information it has about the words in
the review. The accuracy can be improved by fine-tuning the hyperparameters like
learning_rate or by training for more epochs. Because the number of parameters
for pretrained language models far exceeds the number of observations we use for
fine-tuning, we must be careful to avoid overfitting during this process!

Using Saved Models

If you are running the evaluation separately, you can load the fine-
tuned model directly without the need to train again. Note that this
is the same function that we initially used to load the pretrained
model from transformers, but this time we are using the fine-tuned
model that we trained ourselves.
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As you can see, using a pretrained language model improves the accuracy of our
model but also involves many additional steps and can incur costs like the use of a
GPU (training a useful model on CPU can take 50–100 times longer). The pretrained
models are quite large and not memory efficient. Using these models in production is
often more complicated because of the time taken to load millions of parameters in
memory, and they are inefficient for real-time scenarios because of longer inference
times. Some pretrained models like DistilBERT and ALBERT have been specifically
developed for a more favorable trade-off between accuracy and model simplicity. You
can easily try this by reusing the blueprint and changing the appropriate model
classes to choose the distil-bert-uncased or albert-base-v1 model, which is 
available in the Transformers library, to check the accuracy.

Closing Remarks
In this chapter, we introduced several blueprints that can be used for sentiment analy‐
sis. They range from simple lexicon-based approaches to complex state-of-the-art
language models. If your use case is a one-time analysis to determine the sentiment of
a particular topic using Twitter data, then the first blueprint would be most suitable.
If you are looking to create a ranking of products/brands using sentiment expressed
in customer reviews or route customer complaints based on their sentiment, then a
supervised machine learning approach as described in the second and third blue‐
prints would be more suitable. If accuracy is of utmost importance, the best results
are obtained by using a pretrained language model, but this is also a more compli‐
cated and expensive technique. Each blueprint is appropriate for a given use case, and
the crucial thing is to determine which approach is suitable for your needs. In gen‐
eral, you must find a method that works well for your use case, and the suggestion
would always be to keep it simple at the start and then increase the complexity to get 
better results.
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CHAPTER 12

Building a Knowledge Graph

In this book, we have been working through many blueprints for text analysis. Our
goal was always to identify patterns in the data with the help of statistics and machine
learning. In Chapter 10 we explained how embeddings can be used to answer ques‐
tions like “What is to Germany like Paris is to France?” Embeddings represent some
kind of implicit knowledge that was learned from the training documents based on a
notion of similarity.

A knowledge base, in contrast, consists of structured statements of the form “Berlin
capital-of Germany.” In this case, “capital-of ” is a precisely defined relation between
the two specific entities Berlin and Germany. The network formed by many entities
and their relations is a graph in the mathematical sense, a knowledge graph.
Figure 12-1 shows a simple knowledge graph illustrating the example. In this chapter,
we will introduce blueprints to extract structured information from unstructured text
and build a basic knowledge graph.

Figure 12-1. A simple knowledge graph.
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1 See Natasha Noy, Yuqing Gao, Anshu Jain, Anant Narayanan, Alan Patterson, and Jamie Taylor. Industry-scale
Knowledge Graphs: Lessons and Challenges. 2019. https://queue.acm.org/detail.cfm?id=3332266.

2 See https://oreil.ly/nzhUR for details.

What You’ll Learn and What We’ll Build
Information extraction is one of the hardest tasks in natural language processing
because of the complexity and inherent ambiguity of language. Thus, we need to
apply a sequence of different steps to discover the entities and relationships. Our
example use case in this section is the creation of a knowledge graph based on busi‐
ness news articles about companies.

In the course of the chapter, we will take a deep dive into the advanced language pro‐
cessing features of spaCy. We will use the pretrained neural models in combination
with custom rules for named-entity recognition, coreference resolution, and relation
extraction. We will also explain the necessary steps to perform entity linking, but we
won’t go into the implementation details.

After reading this chapter, you will have the basic linguistic and technical knowledge
to start building your own knowledge base. You will find the source code for this
chapter and additional information in our GitHub repository.

Knowledge Graphs
A knowledge graph is a large semantic network. It consists of nodes that are entities
such as persons, places, events, or companies, and edges that represent formalized
relations between those nodes, as shown in Figure 12-1.

All the big players such as Google, Microsoft, Facebook, etc., use knowledge graphs to
power their search engines and query services.1 And nowadays more and more com‐
panies are building their own knowledge graphs to gain market insights or power
chatbots. But the largest knowledge graph is distributed all over the world: Linked
Open Data refers to all the available data on the web that can be identified by a uni‐
form resource identifier (URI). It is the result of 20 years of academic development in
the area of the Semantic Web (see “Semantic Web and RDF” on page 325).

The types of nodes and edges are precisely defined by an ontology, which is itself a
knowledge base for the terminology used in a domain. For example, the public ontol‐
ogy Wikidata provides definitions for all types used in Figure 12-1.2 Each of these def‐
initions has a unique URI (e.g., “city” is http://www.wikidata.org/wiki/Q515.). In fact,
Wikidata contains both, the type definitions and the actual objects in a queryable
format.
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3 Tim Berners-Lee et al., “The Semantic Web: a New Form of Web Content that is Meaningful to Computers
Will Unleash a Revolution of New Possibilities.” Scientific American 284 No. 5: May 2001.

Semantic Web and RDF
The vision of Tim Berners-Lee, who coined the term Semantic Web in 2001, was to
make the data on the web understandable to computers.3 Today, a lot of knowledge is
available in public knowledge graphs. For example, Wikidata and DBpedia are two
huge knowledge bases related to Wikipedia.

RDF, the resource description framework, is a W3C standard that defines notations
for entities and their attributes and relationships. Its intention is to simplify the inter‐
linking of knowledge between knowledge bases. The basic concepts in RDF are
resources and statements. The resources are “things” like entities, types, or literal val‐
ues. A statement is a subject-predicate-object triple of resources, like Berlin(Q64)
capital-of(P1376) Germany(Q183). The numbers in the example are the unique Wiki‐
data identifiers for the mentioned entities and the relation “capital-of.” Unique identi‐
fiers and standardized definitions are the basis to interlink public and private
knowledge bases.

Public knowledge bases like Wikidata provide the possibility to query their data with
SPARQL. SPARQL is an RDF-based query language. You could, for example, visit the
Wikidata SPARQL endpoint and request a list of relevant entities for your domain. In
the notebook on GitHub for this chapter, you will find an additional blueprint that
queries the Wikidata SPARQL endpoint. It request the list of all US departments with
their alias names and returns the result as a Pandas dataframe.

Information Extraction
There are several typical steps needed to extract structured information from text, as
shown in Figure 12-2. As a first step, named-entity recognition, finds mentions of
named entities in the text and labels them with the correct type, e.g., person, organi‐
zation, or location. The same entity is usually referenced multiple times in a docu‐
ment by different variants of the name or by pronouns. The second step, coreference
resolution, identifies and resolves those coreferences to prevent duplicates and infor‐
mation loss.

Closely related to coreference resolution, and usually the next step, is the task of
entity linking. Here, the goal is to link a mention in the text to a unique real-world
entity in an ontology, for example, Berlin to the URI http://www.wikidata.org/entity/
Q64. Thus, any ambiguities are removed: Q64 is the Berlin in Germany and not the
one in New Hampshire (which is, by the way, Q821244 in Wikidata). This is essential
to connect information from different sources and really build a knowledge base.
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Figure 12-2. The process of information extraction.

The last step, relation extraction, identifies the relations between those entities. In an
application scenario, you will usually consider only a few relations of interest because
it is hard to extract this kind of information correctly from arbitrary text.

Finally, you could store the graph in a graph database as the backend of a knowledge-
based application. Such graph databases store the data either as RDF triples (triple
stores) or in the form of a property graph, where nodes and edges can have arbitrary
attributes. Commonly used graph databases are, for example, GraphDB (triple store),
Neo4j, and Grakn (property graphs).

For each of the steps, you have the choice between a rule-based approach and
machine learning. We will use available models of spaCy and rules in addition. We
will not train our own models, though. The usage of rules for the extraction of
domain-specific knowledge has the advantage that you can get started quickly
without training data. As we will see, the results allow some really interesting analy‐
ses. But if you plan to build a corporate knowledge base on a large scale, you may
have to train your own models for named-entity and relationship detection as well as
for entity linking.

Introducing the Dataset
Assume you are working in the financial business and want to track news on mergers
and acquisitions. It would be great if you could automatically identify company
names and the kind of deals they are involved in and make the results available in a
knowledge base. In this chapter, we will explain the building blocks to extract some
information about companies. For example, we will extract the relation “Company1
acquires Company2.”

To simulate such a scenario, we use a publicly available dataset, the well-known
Reuters-21578 news corpus. It contains more than 20,000 news articles of 90 cate‐
gories published by Reuters in 1987. This dataset was chosen because it is free and
easy to get. In fact, it is available as one of the NLTK standard corpora, and you can
simply download it with NLTK:

import nltk
nltk.download('reuters')

326 | Chapter 12: Building a Knowledge Graph

https://oreil.ly/lltWo


We will work only with articles from the acquisitions category (acq). To prepare it for
our purposes, we loaded all articles into a single DataFrame and did some data clean‐
ing following the blueprints in “Cleaning Text Data” on page 94. Clean data is crucial
to recognize named-entities and relationships as the neural models benefit from well-
structured sentences. For this dataset, we substituted HTML escapes, removed stock
ticker symbols, replaced abbreviations like mln for million, and corrected some spell‐
ing mistakes. We also dropped the headlines because they are written in capital letters
only. The complete article bodies are retained, though. All cleaning steps can be
found in the notebook on GitHub. Let’s take a look at a sample of the cleaned articles
in our DataFrame:

USAir Group Inc said a U.S. District Court in Pittsburgh issued a temporary
restraining order to prevent Trans World Airlines Inc from buying additional
USAir shares. USAir said the order was issued in response to its suit, charging
TWA chairman Carl Icahn and TWA violated federal laws and made misleading
statements. TWA last week said it owned 15 % of USAir's shares. It also offered
to buy the company for 52 dollars a share cash or 1.4 billion dollars.

So, this is the data we have in mind when we develop the blueprints for information
extraction. However, most of the sentences in the following sections are simplified
examples to better explain the concepts.

Named-Entity Recognition
After data cleaning, we can start with the first step of our information extraction pro‐
cess: named-entity recognition. Named-entity recognition was briefly introduced in
Chapter 4 as part of spaCy’s standard pipeline. spaCy is our library of choice for all
the blueprints in this chapter because it is fast and has an extensible API that we will
utilize. But you could also use Stanza or Flair (see “Alternatives for NER: Stanza and
Flair” on page 329).

spaCy provides trained NER models for many languages. The English models have
been trained on the large OntoNotes5 corpus containing 18 different entity types.
Table 12-1 lists a subset of these. The remaining types are for numeric entities.

Table 12-1. Subset of NER types of the OntoNotes 5 corpus

NER Type Description NER Type Description
PERSON People, including fictional PRODUCT Vehicles, weapons, foods, etc. (Not

services)
NORP Nationalities or religious or political groups EVENT Named hurricanes, battles, wars, sports

events, etc.
FAC Facilities: buildings, airports, highways, bridges,

etc.
WORK_OF_ART Titles of books, songs, etc.

ORG Organizations: companies, agencies, institutions,
etc.

LAW Named documents made into laws
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4 The asterisk operator (*) unpacks the list into separate arguments for print.

NER Type Description NER Type Description
GPE Countries, cities, states LANGUAGE Any named language
LOCATION Non-GPE locations, mountain ranges, bodies of

water

The NER tagger is enabled by default when you load a language model. Let’s start by
initializing an nlp object with the standard (small) English model en_core_web_sm
and print the components of the NLP pipeline:4

nlp = spacy.load('en_core_web_sm')
print(*nlp.pipeline, sep='\n')

Out:

('tagger', <spacy.pipeline.pipes.Tagger object at 0x7f98ac6443a0>)
('parser', <spacy.pipeline.pipes.DependencyParser object at 0x7f98ac7a07c0>)
('ner', <spacy.pipeline.pipes.EntityRecognizer object at 0x7f98ac7a0760>)

Once the text is processed, we can access the named entities directly with doc.ents.
Each entity has a text and a label describing the entity type. These attributes are used
in the last line in the following code to print the list of entities recognized in this text:

text = """Hughes Tool Co Chairman W.A. Kistler said its merger with
Baker International Corp was still under consideration.
We hope to come soon to a mutual agreement, Kistler said.
The directors of Baker filed a law suit in Texas to force Hughes
to complete the merger."""
doc = nlp(text)

print(*[(e.text, e.label_) for e in doc.ents], sep=' ')

Out:

(Hughes Tool Co, ORG) (W.A. Kistler, PERSON) (Baker International Corp, ORG)
(Kistler, ORG) (Baker, PERSON) (Texas, GPE) (Hughes, ORG)

With spaCy’s neat visualization module displacy, we can generate a visual represen‐
tation of the sentence and its named entities. This is helpful to inspect the result:

from spacy import displacy
displacy.render(doc, style='ent')
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Out:

In general, spaCy’s named-entity recognizer does a good job. In our example, it was
able to detect all named entities. The labels of Kistler and Baker in the second and
third sentence, however, are not correct. In fact, distinguishing between persons and
organizations is quite a challenge for NER models because those entity types are used
very similarly. We will resolve such problems later in the blueprint for name-based
coreference resolution.

Alternatives for NER: Stanza and Flair
Previously known as StanfordNLP, Stanza 1.0.0 was released in March 2020. Similar
to spaCy, it was designed to support many languages in a coherent way. It also
includes a Python API for additional linguistic functions in the well-known CoreNLP
Java package.

Stanza’s API is very similar to spaCy’s. Even better, the spacy_stanza library, which is
officially maintained by spaCy’s development team from Explosion, provides a wrap‐
per for the Stanza NLP pipeline. So, you can use the spaCy-based blueprints of this
chapter and still leverage the models of Stanza if you want. As of the time of writing
this book, Stanza’s English models are more accurate than the models of spaCy 2.3.2
in our example. But they are huge in size and therefore much slower. The models in
spaCy 3.0 are reported to be as accurate as Stanza’s and significantly faster.

Another popular NLP library with excellent NER models is Flair. Flair was developed
by people from Humboldt University in Berlin and Zalando Research and is now part
of the PyTorch ecosystem. It is definitely worth checking out.

Blueprint: Using Rule-Based Named-Entity Recognition
If you want to identify domain-specific entities on which the model has
not been trained, you can of course train your own model with spaCy. But
training a model requires a lot of training data. Often it is sufficient to 

specify simple rules for custom entity types. In this section, we will show how to use
rules to detect government organizations like the “Department of Justice” (or alterna‐
tively the “Justice Department”) in the Reuters dataset.
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5 See spaCy’s rule-based matching usage docs for an explanation of the syntax, and check out the interactive
pattern explorer on https://explosion.ai/demos/matcher.

spaCy provides an EntityRuler for this purpose, a pipeline component that can be
used in combination with or instead of the statistical named-entity recognizer. Com‐
pared to regular expression search, spaCy’s matching engine is more powerful
because patterns are defined on sequences of spaCy’s tokens instead of just strings.
Thus, you can use any token property like the lemma or the part-of-speech tag to
build your patterns.

So, let’s define some pattern rules to match departments of the US government and
the “Securities and Exchange Commission,” which is frequently mentioned in our
corpus:

from spacy.pipeline import EntityRuler

departments = ['Justice', 'Transportation']
patterns = [{"label": "GOV",
             "pattern": [{"TEXT": "U.S.", "OP": "?"},
                         {"TEXT": "Department"}, {"TEXT": "of"},
                         {"TEXT": {"IN": departments}, "ENT_TYPE": "ORG"}]},
             {"label": "GOV",
              "pattern": [{"TEXT": "U.S.", "OP": "?"},
                          {"TEXT": {"IN": departments}, "ENT_TYPE": "ORG"},
                          {"TEXT": "Department"}]},
             {"label": "GOV",
              "pattern": [{"TEXT": "Securities"}, {"TEXT": "and"},
                          {"TEXT": "Exchange"}, {"TEXT": "Commission"}]}]

Each rule consists of a dictionary with a label, in our case the custom entity type GOV,
and a pattern that the token sequence must match. You can specify multiple rules for
the same label, as we did here.5 The first rule, for example, matches sequences of
tokens with the texts "U.S." (optional, denoted by "OP": "?"), "Department", "of",
and either "Justice" or "Transportation". Note that this and the second rule refine
already recognized entities of type ORG. Thus, these patterns must be applied on top
and not instead of spaCy’s named-entity model.

Based on these patterns, we create an EntityRuler and add it to our pipeline:

entity_ruler = EntityRuler(nlp, patterns=patterns, overwrite_ents=True)
nlp.add_pipe(entity_ruler)

Now, when we call nlp, those organizations will automatically be labeled with the new
type GOV:

text = """Justice Department is an alias for the U.S. Department of Justice.
Department of Transportation and the Securities and Exchange Commission
are government organisations, but the Sales Department is not."""
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doc = nlp(text)
displacy.render(doc, style='ent')

Out:

Blueprint: Normalizing Named Entities
One approach to simplify the resolution of different entity mentions to a 
single name is the normalization or standardization of mentions. Here, we
will do a first normalization, which is generally helpful: the removal of

unspecific suffixes and prefixes. Take a look at this example:

text = "Baker International's shares climbed on the New York Stock Exchange."

doc = nlp(text)
print(*[([t.text for t in e], e.label_) for e in doc.ents], sep='\n')

Out:

(['Baker', 'International', "'s"], 'ORG')
(['the', 'New', 'York', 'Stock', 'Exchange'], 'ORG')

In the first sentence, the token sequence Baker International's was detected as an
entity even though the genitive-s is not part of the company name. A similar case is
the article in the New York Stock Exchange. Regardless of whether the article is
actually part of the name or not, entities will likely be referenced sometimes with and
sometimes without the article. Thus, the general removal of the article and an
apostrophe-s simplifies the linking of mentions.

As with any rules, there is a potential of errors: think of The Wall
Street Journal or McDonald's. If you need to preserve the article
or the apostrophe-s in such cases, you must define exceptions for
the rules.

Our blueprint function shows how to implement normalizations such as removing a
leading article and a trailing apostrophe-s in spaCy. As we are not allowed to update
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entities in place, we create a copy of the entities and apply our modifications to this
copy:

from spacy.tokens import Span

def norm_entities(doc):
    ents = []
    for ent in doc.ents:
        if ent[0].pos_ == "DET": # leading article
            ent = Span(doc, ent.start+1, ent.end, label=ent.label)
        if ent[-1].pos_ == "PART": # trailing particle like 's
            ent = Span(doc, ent.start, ent.end-1, label=ent.label)
        ents.append(ent)
    doc.ents = tuple(ents)
    return doc

An entity in spaCy is a Span object with a defined start and end plus an additional
label denoting the type of the entity. We loop through the entities and adjust the posi‐
tion of the first and last token of the entity if necessary. Finally, we replace doc.ents
with our modified copy.

The function takes a spaCy Doc object (named doc) as a parameter and returns a Doc.
Therefore, we can use it as a another pipeline component and simply add it to the
existing pipeline:

nlp.add_pipe(norm_entities)

Now we can repeat the process on the example sentences and check the result:

doc = nlp(text)
print(*[([t.text for t in e], e.label_) for e in doc.ents], sep='\n')

Out:

(['Baker', 'International'], 'ORG')
(['New', 'York', 'Stock', 'Exchange'], 'ORG')

Merging Entity Tokens
In many cases, it makes sense to treat compound names like the ones from the previ‐
ous example as single tokens because it simplifies the sentence structure. spaCy pro‐
vides a built-in pipeline function merge_entities for that purpose. We add it to our
NLP pipeline and get exactly one token per named-entity:

from spacy.pipeline import merge_entities
nlp.add_pipe(merge_entities)

doc = nlp(text)
print(*[(t.text, t.ent_type_) for t in doc if t.ent_type_ != ''])
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Out:

('Baker International', 'ORG') ('New York Stock Exchange', 'ORG')

Even though merging entities simplifies our blueprints later in this chapter, it may not
always be a good idea. Think, for example, about compound entity names like London
Stock Exchange. After merging into a single token, the implicit relation of this entity
to the city of London will be lost.

Coreference Resolution
One of the greatest obstacles in information extraction is the fact that entity mentions
appear in many different spellings (also called surface forms). Look at the following
sentences:

Hughes Tool Co Chairman W.A. Kistler said its merger with Baker International Corp.
was still under consideration. We hope to come to a mutual agreement, Kistler said.
Baker will force Hughes to complete the merger. A review by the U.S. Department of
Justice was completed today. The Justice Department will block the merger after con‐
sultation with the SEC.

As we can see, entities are frequently introduced by their full name, while later men‐
tions use abbreviated versions. This is one type of coreference that must resolved to
understand what’s going on. Figure 12-3 shows a co-occurrence graph without (left)
and with (right) unified names. Such a co-occurrence graph, as we will build in the
next section, is a visualization of entity pairs appearing in the same article.

Figure 12-3. A co-occurrence graph of the same articles before (left) and after coreference
resolution (right).

Coreference resolution is the task of determining the different mentions of an entity
within a single text, for example, abbreviated names, aliases, or pronouns. The result
of this step is a group of coreferencing mentions called a mention cluster, for example,
{Hughes Tool Co, Hughes, its}. Our target in this section is to identify related
mentions and link them within a document.
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For this purpose, we develop a couple of blueprints for coreference resolution and
name unification (see Figure 12-4). We will restrict ourselves to organizations and
persons, as these are the entity types we are interested in. First, we will resolve aliases
like SEC by a dictionary lookup. Then we will match names within a document to the
first mention. For example, we will create a link from “Kistler” to “W.A. Kistler.” After
that, indirect references (anaphora) like the pronoun its in the first sentence will be
resolved. Finally, we will normalize again the names of the resolved entities. All of
these steps will be implemented as additional pipeline functions.

Figure 12-4. Pipeline for named-entity recognition and coreference resolution.

Entity linking goes one step further. Here the mentions of an entity are disambiguated
on a semantic level and linked to a unique entry in an existing knowledge base.
Because entity linking is itself a challenging task, we will not provide a blueprint for
that but just discuss it at the end of this section.

Blueprint: Using spaCy’s Token Extensions
We need a way to technically create the link from the different mentions
of an entity to the main reference, the referent. After coreference resolu‐
tion, the token for “Kistler” of the example article should point to “(W.A.

Kistler, PERSON).” spaCy’s extension mechanism allows us to define custom
attributes, and this is the perfect way to store this kind of information with tokens.
Thus, we create two token extensions ref_n (referent’s name) and ref_t (referent’s
type). The attributes will be initialized for each token with the specified default values
by spaCy for each token:

from spacy.tokens import Token
Token.set_extension('ref_n', default='')
Token.set_extension('ref_t', default='')

The function init_coref shown next ensures that each entity mention of type ORG,
GOV, and PERSON gets an initial reference to itself. This initialization is required for the
succeeding functions:

def init_coref(doc):
    for e in doc.ents:
        if e.label_ in ['ORG', 'GOV', 'PERSON']:
            e[0]._.ref_n, e[0]._.ref_t = e.text, e.label_
    return doc
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6 You will find an additional blueprint for acronym detection in the notebook for this chapter on GitHub.

The custom attributes are accessed via the underscore property of the token. Note
that after merge_entities, each entity mention e consists of a single token e[0]
where we set the attributes. We could also define the attributes on the entity spans
instead of tokens, but we want to use the same mechanism for pronoun resolution
later.

Blueprint: Performing Alias Resolution
Our first targets are well-known domain aliases like Transportation
Department for “U.S. Department of Transportation” and acronyms like
SEC or TWA. A simple solution to resolve such aliases is to use a lookup

dictionary. We prepared such a dictionary for all the acronyms and some common
aliases of the Reuters corpus and provided it as part of the blueprints module for this
chapter.6 Here are some example lookups:

from blueprints.knowledge import alias_lookup

for token in ['Transportation Department', 'DOT', 'SEC', 'TWA']:
    print(token, ':', alias_lookup[token])

Out:

Transportation Department : ('U.S. Department of Transportation', 'GOV')
DOT : ('U.S. Department of Transportation', 'GOV')
SEC : ('Securities and Exchange Commission', 'GOV')
TWA : ('Trans World Airlines Inc', 'ORG')

Each token alias is mapped to a tuple consisting of an entity name and a type. The
function alias_resolver shown next checks whether an entity’s text is found in the
dictionary. If so, its ref attributes are updated to the looked-up value:

def alias_resolver(doc):
    """Lookup aliases and store result in ref_t, ref_n"""
    for ent in doc.ents:
        token = ent[0].text
        if token in alias_lookup:
            a_name, a_type = alias_lookup[token]
            ent[0]._.ref_n, ent[0]._.ref_t = a_name, a_type
    return propagate_ent_type(doc)

Once we have resolved the aliases, we can also correct the type of the named-entity in
case it was misidentified. This is done by the function propagate_ent_type. It
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updates all resolved aliases and will also be used in the next blueprint for name-based
coreference resolution:

def propagate_ent_type(doc):
    """propagate entity type stored in ref_t"""
    ents = []
    for e in doc.ents:
        if e[0]._.ref_n != '': # if e is a coreference
            e = Span(doc, e.start, e.end, label=e[0]._.ref_t)
        ents.append(e)
    doc.ents = tuple(ents)
    return doc

Again, we add the alias_resolver to our pipeline:

nlp.add_pipe(alias_resolver)

Now we can inspect the results. For this purpose, our provided blueprints package
includes a utility function display_ner that creates a DataFrame for the tokens in a
doc object with the relevant attributes for this chapter:

from blueprints.knowledge import display_ner
text = """The deal of Trans World Airlines is under investigation by the
U.S. Department of Transportation.
The Transportation Department will block the deal of TWA."""
doc = nlp(text)
display_ner(doc).query("ref_n != ''")[['text', 'ent_type', 'ref_n', 'ref_t']]

Out:

text ent_type ref_n ref_t

3 Trans World Airlines ORG Trans World Airlines Inc ORG

9 U.S. Department of Transportation GOV U.S. Department of Transportation GOV

12 Transportation Department GOV U.S. Department of Transportation GOV

18 TWA ORG Trans World Airlines Inc ORG

Blueprint: Resolving Name Variations
Alias resolution works only if the aliases are known up front. But because
articles contain variations of almost any names, it is not feasible to build a
dictionary for all of them. Take a look again at the recognized named enti‐

ties in the first sentences of our introductory example:
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Here you find the coreference “Kistler” for W.A. Kistler (PERSON), “Baker” for Baker
International Corp (ORG), and “Hughes” for Hughes Tool Co (ORG). And as you can
see, abbreviated company names are often mistaken for people, especially when they
are used in impersonated form, as in the examples. In this blueprint, we will resolve
those coreferences and assign the correct entity types to each mention.

For that, we will exploit a common pattern in news articles. An entity is usually intro‐
duced first by its full name, while later mentions use abbreviated versions. Thus, we
will resolve the secondary references by matching the names to the first mention of
an entity. Of course, this is a heuristic rule that could produce false matches. For
example, Hughes could also refer in the same article to the company and to the legen‐
dary entrepreneur Howard Hughes (who indeed founded Hughes Tool Co.). But such
cases are rare in our dataset, and we decide to accept that uncertainty in favor of the
many cases where our heuristics works correctly.

We define a simple rule for name matching: a secondary mention matches a primary
mention if all of its words appear in the primary mention in the same order. To check
this, the function name_match shown next transforms a secondary mention m2 into a
regular expression and searches for a match in the primary mention m1:

def name_match(m1, m2):
    m2 = re.sub(r'[()\.]', '', m2) # ignore parentheses and dots
    m2 = r'\b' + m2 + r'\b' # \b marks word boundary
    m2 = re.sub(r'\s+', r'\\b.*\\b', m2)
    return re.search(m2, m1, flags=re.I) is not None

The secondary mention of Hughes Co., for example, would be converted into
'\bHughes\b.*\bCo\b', which matches Hughes Tool Co. The \b ensures that only
whole words match and not subwords like Hugh.

Based on this matching logic, the function name_resolver shown next implements
the name-based coreference resolution for organizations and persons:

def name_resolver(doc):
    """create name-based reference to e1 as primary mention of e2"""
    ents = [e for e in doc.ents if e.label_ in ['ORG', 'PERSON']]
    for i, e1 in enumerate(ents):
        for e2 in ents[i+1:]:
            if name_match(e1[0]._.ref_n, e2[0].text):
                e2[0]._.ref_n = e1[0]._.ref_n
                e2[0]._.ref_t = e1[0]._.ref_t
    return propagate_ent_type(doc)
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First, we create a list of all organization and person entities. Then all pairs of entities
e1 and e2 are compared against each other. The logic ensures that entity e1 always
comes before e2 in the document. If e2 matches e1, its referent is set to the same as
in e1. Thus, the first matching entity is automatically propagated to its subsequent
coreferences.

We add this function to the nlp pipeline and check the result:

nlp.add_pipe(name_resolver)

doc = nlp(text)
displacy.render(doc, style='ent')

Out:

Now each named-entity in our example has the correct type. We can also check that
the entities are mapped to their first mention:

display_ner(doc).query("ref_n != ''")[['text', 'ent_type', 'ref_n', 'ref_t']]

Out:

 text ent_type ref_n ref_t

0 Hughes Tool Co ORG Hughes Tool Co ORG

2 W.A. Kistler PERSON W.A. Kistler PERSON

7 Baker International Corp. ORG Baker International Corp. ORG

22 Kistler PERSON W.A. Kistler PERSON

25 Baker ORG Baker International Corp. ORG

28 Hughes ORG Hughes Tool Co ORG

Blueprint: Performing Anaphora Resolution with
NeuralCoref
In linguistics, anaphora are words whose interpretation depends on the
preceding text. Consider this variation of our example sentences:

text = """Hughes Tool Co said its merger with Baker
was still under consideration. Hughes had a board meeting today.
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7 See Wolf (2017),“State-Of-The-Art Neural Coreference Resolution For Chatbots” for more.

W.A. Kistler mentioned that the company hopes for a mutual agreement.
He is reasonably confident."""

Here its, the company, and he are anaphora. NeuralCoref from Hugging Face is a
library to resolve these kind of coreferences. The algorithm uses feature vectors based
on word embeddings (see Chapter 10) in combination with two neural networks to
identify coreference clusters and their main mentions.7

NeuralCoref is implemented as a pipeline extension for spaCy, so it fits perfectly into
our process. We create the neural coreference resolver with a greedyness value of
0.45 and add it to our pipeline. The greedyness controls the sensitivity of the model,
and after some experiments, we decided to choose a little more restrictive (better
accuracy, lower recall) value than the default 0.5:

from neuralcoref import NeuralCoref
neural_coref = NeuralCoref(nlp.vocab, greedyness=0.45)
nlp.add_pipe(neural_coref, name='neural_coref')

NeuralCoref uses also spaCy’s extension mechanism to add custom attributes to Doc,
Span, and Token objects. When a text is processed, we can access the detected corefer‐
ence clusters with the doc._.coref_clusters attribute. In our example, three such
clusters have been identified:

doc = nlp(text)
print(*doc._.coref_clusters, sep='\n')

Out:

Hughes Tool Co: [Hughes Tool Co, its]
Hughes: [Hughes, the company]
W.A. Kistler: [W.A. Kistler, He]

NeuralCoref works on Span objects (sequences of token) because coreferences in gen‐
eral are not limited to named entities. Thus, the blueprint function anaphor_coref
retrieves for each token the first coreference cluster and searches for the first named-
entity with a value in its ref_n attribute. In our case, this will be organizations and
people only. Once found, it sets the values in ref_n and ref_t of the anaphor token
to the same values as in the primary reference:

def anaphor_coref(doc):
    """anaphora resolution"""
    for token in doc:
        # if token is coref and not already dereferenced
        if token._.in_coref and token._.ref_n == '':
            ref_span = token._.coref_clusters[0].main # get referred span
            if len(ref_span) <= 3: # consider only short spans
                for ref in ref_span: # find first dereferenced entity
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                    if ref._.ref_n != '':
                        token._.ref_n = ref._.ref_n
                        token._.ref_t = ref._.ref_t
                        break
    return doc

Again, we add this resolver to our pipeline and check the result:

nlp.add_pipe(anaphor_coref)
doc = nlp(text)
display_ner(doc).query("ref_n != ''") \
  [['text', 'ent_type', 'main_coref', 'ref_n', 'ref_t']]

Out:

text ent_type main_coref ref_n ref_t

0 Hughes Tool Co ORG Hughes Tool Co Hughes Tool Co ORG

2 its Hughes Tool Co Hughes Tool Co ORG

5 Baker PERSON None Baker PERSON

11 Hughes ORG Hughes Hughes Tool Co ORG

18 W.A. Kistler PERSON W.A. Kistler W.A. Kistler PERSON

21 the Hughes Hughes Tool Co ORG

22 company Hughes Hughes Tool Co ORG

29 He W.A. Kistler W.A. Kistler PERSON

Now our pipeline consists of all the steps shown in Figure 12-4.

Beware of long runtimes! NeuralCoref increases the total process‐
ing time by a factor of 5–10. So, you should use anaphora resolu‐
tion only if necessary.

Name Normalization
Even though our name resolution unifies company mentions within an article, the
company names are still inconsistent across articles. We find Hughes Tool Co. in one
article and Hughes Tool in another one. An entity linker can be used to link different
entity mentions to a unique canonical representation, but in absence of an entity
linker we will use the (resolved) name entity as its unique identifier. Because of the
previous steps for coreference resolution, the resolved names are always the first, and
thus usually most complete, mentions in an article. So, the potential for errors is not
that large.
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8 This slogan was coined by Google when it introduced its knowledge graph in 2012.

Still, we have to harmonize company mentions by removing the legal suffixes like Co.
or Inc. from company names. The following function uses a regular expression to
achieve this:

def strip_legal_suffix(text):
    return re.sub(r'(\s+and)?(\s+|\b(Co|Corp|Inc|Plc|Ltd)\b\.?)*$', '', text)

print(strip_legal_suffix('Hughes Tool Co'))

Out:

Hughes Tool

The last pipeline function norm_names applies this final normalization to each of the
coreference-resolved organization names stored in the ref_n attributes. Note that
Hughes (PERSON) and Hughes (ORG) will still remain separate entities with this
approach.

def norm_names(doc):
    for t in doc:
        if t._.ref_n != '' and t._.ref_t in ['ORG']:
            t._.ref_n = strip_legal_suffix(t._.ref_n)
            if t._.ref_n == '':
                t._.ref_t = ''
    return doc

nlp.add_pipe(norm_names)

Sometimes the named-entity recognizer misclassifies a legal suffix like Co. or Inc. by
itself as named-entity. If such an entity name gets stripped to the empty string, we just
ignore it for later processing.

Entity Linking
In the previous sections we developed a pipeline of operations with the purpose of
unifying the different mentions of named entities. But all this is string based, and
except for the syntactical representation, we have no connection between the string
U.S. Department of Justice and the represented real-world entity. The task of an entity
linker, in contrast, is to resolve named entities globally and link them to a uniquely
identified real-world entity. Entity linking makes the step from “strings to things.”8

Technically, this means that each mention is mapped to a URI. URIs, in turn, address
entities in an existing knowledge base. This can be a public ontology, like Wikidata or
DBpedia, or a private knowledge base in your company. URIs can be URLs (e.g., web
pages) but do not have to be. The U.S. Department of Justice, for example, has the
Wikidata URI http://www.wikidata.org/entity/Q1553390, which is also a web page

Coreference Resolution | 341

http://www.wikidata.org/entity/Q1553390


where you find information about this entity. If you build your own knowledge base,
it is not necessary to have a web page for each URI; they just must be unique.
DBpedia and Wikidata, by the way, use different URIs, but you will find the Wikidata
URI on DBpedia as a cross-reference. Both, of course, contain links to the Wikipedia
web page.

Entity linking is simple if an entity is mentioned by a fully qualified name, like the
U.S. Department of Justice. But the term Department of Justice without U.S. is already
quite ambiguous because many states have a “Department of Justice.” The actual
meaning depends on the context, and the task of an entity linker is to map such an
ambiguous mention context-sensitively to the correct URI. This is quite a challenge
and still an area of ongoing research. A common solution for entity linking in busi‐
ness projects is the usage of a public service (see “Services for Entity Linking”).

Services for Entity Linking
There are several web services for named-entity resolution and linking. DBpedia
Spotlight, for example, is an open service that links to DBpedia resources. You can
either use the public web service or deploy a copy in your own environment. A com‐
mercial alternative for such a service is TextRazor, which even provides a nice Python
library for easy integration into your own project.

Alternatively, you could create your own entity linker. A simple solution would be a
name-based lookup dictionary. But that does not take the context into account and
would not resolve ambiguous names for different entities. For that, you need a more
sophisticated approach. State-of-the-art solutions use embeddings and neural models
for entity linking. spaCy also provides such an entity linking functionality. To use
spaCy’s entity linker, you first have to create embeddings (see Chapter 10) for the
real-world entities, which capture their semantics based on descriptions you specify.
Then you can train a model to learn the context-sensitive mapping of mentions to the
correct URI. The setup and training of an entity linker are, however, beyond the
scope of this chapter.

Blueprint: Creating a Co-Occurrence Graph
In the previous sections, we spent much effort to normalize named enti‐
ties and to resolve at least the in-document coreferences. Now we are

finally ready to analyze a first relationship among pairs of entities: their joint mention
in an article. For this, we will create a co-occurrence graph, the simplest form
of a knowledge graph. The nodes in the co-occurrence graph are the entities, e.g.,
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9 You’ll find the colorized figures in the electronic versions of this book and in our GitHub repository.

organizations. Two entities share an (undirected) edge if they are mentioned in the
same context, for example, within an article, a paragraph, or a sentence.

Figure 12-5 shows part of the co-occurrence graph for companies mentioned
together in articles of the Reuters corpus. The width of the edges visualizes the co-
occurrence frequency. The modularity, a structural measure to identify closely related
groups or communities in a network, was used to colorize the nodes and edges.9

Figure 12-5. Largest connected component of the co-occurrence graph generated from
the Reuters corpus.

Of course, we don’t know anything about the type of relationship here. In fact, the
joint mentioning of two entities merely indicates that there might be some relation‐
ship. We won’t know for sure unless we really analyze the sentences, and we will do
that in the next section. But even the simple exploration of co-occurrences can
already be revealing. For example, the central node in Figure 12-5 is the “Securities
and Exchange Commission” because it is mentioned in many articles together with a
great variety of other entities. Obviously, this entity plays a major role in mergers and
acquisitions. The different clusters give us an impression about groups of companies
(or communities) involved in certain deals.

To plot a co-occurrence graph, we have to extract entity pairs from a document. For
longer articles covering multiple topic areas, it may be better to search for co-
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occurrences within paragraphs or even sentences. But the Reuters articles on mergers
and acquisitions are very focused, so we stick to the document level here. Let’s briefly
walk through the process to extract and visualize co-occurrences.

Extracting Co-Occurrences from a Document
The function extract_coocs returns the list of entities pairs of the specified types
from a given Doc object:

from itertools import combinations

def extract_coocs(doc, include_types):
    ents = set([(e[0]._.ref_n, e[0]._.ref_t)
                for e in doc.ents if e[0]._.ref_t in include_types])
    yield from combinations(sorted(ents), 2)

We first create a set of the coreference-resolved entity names and types. Having this,
we use the function combinations from the Python standard library itertools to
create all the entity pairs. Each pair is sorted lexicographically (sorted(ents)) to pre‐
vent duplicate entries like “(Baker, Hughes)” and “(Hughes, Baker).”

To process the whole dataset efficiently, we use again spaCy’s streaming by calling
nlp.pipe (introduced in Chapter 4). As we do not need anaphora resolution to find
in-document co-occurrences, we disable the respective components here:

batch_size = 100

coocs = []
for i in range(0, len(df), batch_size):
    docs = nlp.pipe(df['text'][i:i+batch_size],
                    disable=['neural_coref', 'anaphor_coref'])
    for j, doc in enumerate(docs):
        coocs.extend([(df.index[i+j], *c)
                      for c in extract_coocs(doc, ['ORG', 'GOV'])])

Let’s take a look at the identified co-occurrences of the first article:

print(*coocs[:3], sep='\n')

Out:

(10, ('Computer Terminal Systems', 'ORG'), ('Sedio N.V.', 'ORG'))
(10, ('Computer Terminal Systems', 'ORG'), ('Woodco', 'ORG'))
(10, ('Sedio N.V.', 'ORG'), ('Woodco', 'ORG'))

In information extraction, it is always recommended to have some kind of traceabil‐
ity that allows you to identify the source of the information in the case of problems.
Therefore, we retain the index of the article, which in our case is the file ID of the
Reuters corpus, with each co-occurrence tuple (here the ID 10). Based on this list, we
generate a DataFrame with exactly one entry per entity combination, its frequency,
and the article IDs (limited to five) where this co-occurrence was found.
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coocs = [([id], *e1, *e2) for (id, e1, e2) in coocs]
cooc_df = pd.DataFrame.from_records(coocs,
             columns=('article_id', 'ent1', 'type1', 'ent2', 'type2'))
cooc_df = cooc_df.groupby(['ent1', 'type1', 'ent2', 'type2'])['article_id'] \
                 .agg(['count', 'sum']) \
                 .rename(columns={'count': 'freq', 'sum': 'articles'}) \
                 .reset_index().sort_values('freq', ascending=False)
cooc_df['articles'] = cooc_df['articles'].map(
                        lambda lst: ','.join([str(a) for a in lst[:5]]))

Here are the three most frequent entity pairs we found in the corpus:

cooc_df.head(3)

Out:

ent1 type1 ent2 type2 freq articles

12667 Trans World Airlines ORG USAir Group ORG 22 1735,1771,1836,1862,1996

5321 Cyclops ORG Dixons Group ORG 21 4303,4933,6093,6402,7110

12731 U.S. Department of Transportation GOV USAir Group ORG 20 1735,1996,2128,2546,2799

Visualizing the Graph with Gephi
Actually, this DataFrame already represents the list of edges for our graph. For the vis‐
ualization we prefer Gephi, an open source tool for graph analysis. Because it is inter‐
active, it is much better to use than Python’s graph library NetworkX.10 To work with
Gephi, we need to save the list of nodes and edges of the graph in Graph Exchange
XML format. Fortunately, NetworkX provides a function to export graphs in this for‐
mat. So, we can simply convert our DataFrame into a NetworkX graph and save it as
a .gexf file. We discard rare entity pairs to keep the graph compact and rename the
frequency column because Gephi automatically uses a weight attribute to adjust the
width of edges:

import networkx as nx

graph = nx.from_pandas_edgelist(
           cooc_df[['ent1', 'ent2', 'articles', 'freq']] \
           .query('freq > 3').rename(columns={'freq': 'weight'}),
           source='ent1', target='ent2', edge_attr=True)

nx.readwrite.write_gexf(graph, 'cooc.gexf', encoding='utf-8',
                        prettyprint=True, version='1.2draft')
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11 We provide more details on that in our GitHub repository for this chapter.
12 See an overview of the state of the art.

After importing the file into Gephi, we selected only the largest component (connec‐
ted subgraph) and removed some nodes with only a few connections manually for the
sake of clarity.11 The result is presented in Figure 12-5.

Sometimes the most interesting relations are the ones that are not
frequent. Take, for example, the first announcement on an upcom‐
ing merger or surprising relations that were mentioned a few times
in the past but then forgotten. A sudden co-occurrence of entities
that were previously unrelated can be a signal to start a deeper
analysis of the relation.

Relation Extraction
Even though the co-occurrence graph already gave us some interesting insights about
company networks, it does not tell us anything about the types of the relations. Take,
for example, the subgraph formed by the companies Schlumberger, Fairchild Semi‐
conductor, and Fujitsu in the lower-left corner of Figure 12-5. So far, we know noth‐
ing about the relations between those companies; the information is still hidden in
sentences like these:

Fujitsu wants to expand. It plans to acquire 80% of Fairchild Corp, an industrial unit of
Schlumberger.

In this section, we will introduce two blueprints for pattern-based relation extraction.
The first and simpler blueprint searches for token phrases of the form “subject-
predicate-object.” The second one uses the syntactical structure of a sentence, the
dependency tree, to get more precise results at the price of more complex rules. In the
end, we will generate a knowledge graph based on the four relations: acquires, sells,
subsidiary-of, and chairperson-of. To be honest, we will use relaxed definitions of
acquires and sells, which are easier to identify. They will also match sentences like
“Fujitsu plans to acquire 80% of Fairchild Corp” or even “Fujitsu withdraws the option
to acquire Fairchild Corp.”

Relation extraction is a complicated problem because of the ambiguity of natural lan‐
guage and the many different kinds and variations of relations. Model-based
approaches to relation extraction are a current topic in research.12 There are also
some training datasets like FewRel publicly available. However, training a model to
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identify relations is still pretty much in the research stage and out of the scope of this
book.

Blueprint: Extracting Relations Using Phrase Matching
The first blueprint works like rule-based entity recognition: it tries to
identify relations based on patterns for token sequences. Let’s start with a
simplified version of the introductory example to explain the approach.

text = """Fujitsu plans to acquire 80% of Fairchild Corp, an industrial unit
of Schlumberger."""

We could find the relations in this sentence by searching for patterns like these:

ORG {optional words, not ORG} acquire {optional words, not ORG} ORG
ORG {optional words, not ORG} unit of {optional words, not ORG} ORG

spaCy’s rule-based matcher allows us to find patterns that not only can involve the
textual tokens but also their properties, like the lemma or part of speech. To use it, we
must first define a matcher object. Then we can add rules with token patternsto the
matcher:

from spacy.matcher import Matcher

matcher = Matcher(nlp.vocab)

acq_synonyms = ['acquire', 'buy', 'purchase']
pattern = [{'_': {'ref_t': 'ORG'}}, # subject
           {'_': {'ref_t': {'NOT_IN': ['ORG']}}, 'OP': '*'},
           {'POS': 'VERB', 'LEMMA': {'IN': acq_synonyms}},
           {'_': {'ref_t': {'NOT_IN': ['ORG']}}, 'OP': '*'},
           {'_': {'ref_t': 'ORG'}}] # object
matcher.add('acquires', None, pattern)

subs_synonyms = ['subsidiary', 'unit']
pattern = [{'_': {'ref_t': 'ORG'}}, # subject
           {'_': {'ref_t': {'NOT_IN': ['ORG']}},
            'POS': {'NOT_IN': ['VERB']}, 'OP': '*'},
           {'LOWER': {'IN': subs_synonyms}}, {'TEXT': 'of'},
           {'_': {'ref_t': {'NOT_IN': ['ORG']}},
            'POS': {'NOT_IN': ['VERB']}, 'OP': '*'},
           {'_': {'ref_t': 'ORG'}}] # object
matcher.add('subsidiary-of', None, pattern)

The first pattern is for the acquires relation. It returns all spans consisting of an
organization, followed by arbitrary tokens that are not organizations, a verb matching
several synonyms of acquire, again arbitrary tokens, and finally the second organiza‐
tion. The second pattern for subsidiary-of works similarly.
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Granted, the expressions are hard to read. One reason is that we used the custom
attribute ref_t instead of the standard ENT_TYPE. This is necessary to match corefer‐
ences that are not marked as entities, e.g., pronouns. Another one is that we have
included some NOT_IN clauses. This is because rules with the asterisk operator (*) are
always dangerous as they search patterns of unbounded length. Additional conditions
on the tokens can reduce the risk for false matches. For example, we want to match
“Fairchild, an industrial unit of Schlumberger” for the subsidiary-of relation, but
not “Fujitsu mentioned a unit of Schlumberger.” When developing rules, you always
have to pay for precision with complexity. We will discuss the problems of the
acquires relation on that aspect in a minute.

The blueprint function extract_rel_match now takes a processed Doc object and a
matcher and transforms all matches to subject-predicate-object triples:

def extract_rel_match(doc, matcher):
    for sent in doc.sents:
        for match_id, start, end in matcher(sent):
            span = sent[start:end]  # matched span
            pred = nlp.vocab.strings[match_id] # rule name
            subj, obj = span[0], span[-1]
            if pred.startswith('rev-'): # reversed relation
                subj, obj = obj, subj
                pred = pred[4:]
            yield ((subj._.ref_n, subj._.ref_t), pred,
                   (obj._.ref_n, obj._.ref_t))

The predicate is determined by the name of the rule; the involved entities are simply
the first and last tokens of the matched span. We restrict the search to the sentence
level because in a whole document we would have a high risk of finding false positives
spanning multiple sentences.

Usually, the rules match in the order “subject-predicate-object,” but often the entities
appear in the text in reversed order, like in “the Schlumberger unit Fairchild Corp.”
Here, the order of entities with regard to the subsidiary-of relation is “object-
predicate-subject.” extract_rel_match is prepared to handle this and switches the
subject and object if a rule has the prefix rev- like this one:

pattern = [{'_': {'ref_t': 'ORG'}}, # subject
           {'LOWER': {'IN': subs_synonyms}}, # predicate
           {'_': {'ref_t': 'ORG'}}] # object
matcher.add('rev-subsidiary-of', None, pattern)

Now we are able to detect acquires and both variants of subsidiary-of in sentences
like these:

text = """Fujitsu plans to acquire 80% of Fairchild Corp, an industrial unit
of Schlumberger. The Schlumberger unit Fairchild Corp received an offer."""
doc = nlp(text)
print(*extract_rel_match(doc, matcher), sep='\n')
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Out:

(('Fujitsu', 'ORG'), 'acquires', ('Fairchild', 'ORG'))
(('Fairchild', 'ORG'), 'subsidiary-of', ('Schlumberger', 'ORG'))
(('Fairchild', 'ORG'), 'subsidiary-of', ('Schlumberger', 'ORG'))

Although the rules work nicely for our examples, the rule for acquires is not very reli‐
able. The verb acquire can appear in many different constellations of entities. Thus,
there is a high probability for false matches like this one:

text = "Fairchild Corp was acquired by Fujitsu."
print(*extract_rel_match(nlp(text), matcher), sep='\n')

Out:

(('Fairchild', 'ORG'), 'acquires', ('Fujitsu', 'ORG'))

Or this one:

text = "Fujitsu, a competitor of NEC, acquired Fairchild Corp."
print(*extract_rel_match(nlp(text), matcher), sep='\n')

Out:

(('NEC', 'ORG'), 'acquires', ('Fairchild', 'ORG'))

Obviously, our rule wasn’t made for passive clauses (“was acquired by”) where the
subject and object switch positions. We also cannot handle insertions containing
named entities or negations because they produce false matches. To treat those cases
correctly, we need knowledge about the syntactical structure of the sentence. And we
get that from the dependency tree.

But let’s first remove the unreliable rule for acquires from the matcher:

if matcher.has_key("acquires"):
    matcher.remove("acquires")

Blueprint: Extracting Relations Using Dependency Trees
The grammatical rules of a language impose a syntactical structure on
each sentence. Each word serves a certain role in relation to the other
words. A noun, for example, can be the subject or the object in a sentence;

it depends on its relation to the verb. In linguistic theory, the words of a sentence are
hierarchically interdependent, and the task of the parser in an NLP pipeline is to
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13 Constituency parsers, in contrast to dependency parsers, create a hierarchical sentence structure based on
nested phrases.

reconstruct these dependencies.13 The result is a dependency tree, which can also be 
visualized by displacy:

text = "Fujitsu, a competitor of NEC, acquired Fairchild Corp."
doc = nlp(text)
displacy.render(doc, style='dep',
                options={'compact': False, 'distance': 100})

Each node in the dependency tree represents a word. The edges are labeled with the
dependency information. The root is usually the predicate of the sentence, in this case
acquired, having a subject (nsubj) and an object (obj) as direct children. This first
level, root plus children, already represents the essence of the sentence “Fujitsu
acquired Fairchild Corp.”

Let’s also take a look at the example with the passive clause. In this case, the auxiliary
verb (auxpass) signals that acquired was used in passive form and Fairchild is the pas‐
sive subject (nsubjpass):

The values of the dependency labels depend on the corpus the
parser model was trained on. They are also language dependent
because different languages have different grammar rules. So, you
definitely need to check which tag set is used by the dependency
parser.
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The function extract_rel_dep implements a rule to identify verb-based relations
like acquires based on the dependencies:

def extract_rel_dep(doc, pred_name, pred_synonyms, excl_prepos=[]):
    for token in doc:
        if token.pos_ == 'VERB' and token.lemma_ in pred_synonyms:
            pred = token
            passive = is_passive(pred)
            subj = find_subj(pred, 'ORG', passive)
            if subj is not None:
                obj = find_obj(pred, 'ORG', excl_prepos)
                if obj is not None:
                    if passive: # switch roles
                        obj, subj = subj, obj
                    yield ((subj._.ref_n, subj._.ref_t), pred_name,
                           (obj._.ref_n, obj._.ref_t))

The main loop iterates through all tokens in a doc and searches for a verb signaling
our relationship. This condition is the same as in the flat pattern rule we used before.
But when we detect a possible predicate, we now traverse the dependency tree to find
the correct subject and the object. find_subj searches the left subtree, and find_obj
searches the right subtree of the predicate. Those functions are not printed in the
book, but you can find them in the GitHub notebook for this chapter. They use
breadth-first search to find the closest subject and object, as nested sentences may
have multiple subjects and objects. Finally, if the predicate indicates a passive clause,
the subject and object will be swapped.

Note, that this function also works for the sells relation:

text = """Fujitsu said that Schlumberger Ltd has arranged
to sell its stake in Fairchild Inc."""
doc = nlp(text)
print(*extract_rel_dep(doc, 'sells', ['sell']), sep='\n')

Out:

(('Schlumberger', 'ORG'), 'sells', ('Fairchild', 'ORG'))

In this case, Fairchild Inc. is the closest object in the dependency tree to sell and iden‐
tified correctly as the object of the investigated relation. But to be the “closest” is not
always sufficient. Consider this example:
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Actually, we have a three-way relation here: Schlumberger sells Fairchild to Fujitsu.
Our sells relation is intended to have the meaning “one company sells [whole or parts
of] another company.” The other part is covered by the acquires relation. But how can
we detect the right object here? Both Fujitsu and Fairchild are prepositional objects in
this sentence (dependency pobj), and Fujitsu is the closest. The preposition is the
key: Schlumberger sells something “to” Fujitsu, so that’s not the relation we are look‐
ing for. The purpose of the parameter excl_prepos in the extraction function is to
skip objects with the specified prepositions. Here is the output without (A) and with
(B) preposition filter:

print("A:", *extract_rel_dep(doc, 'sells', ['sell']))
print("B:", *extract_rel_dep(doc, 'sells', ['sell'], ['to', 'from']))

Out:

A: (('Schlumberger', 'ORG'), 'sells', ('Fujitsu', 'ORG'))
B:

Let’s check how our new relation extraction function works on a few variations of the
examples:

texts = [
     "Fairchild Corp was bought by Fujitsu.", # 1
     "Fujitsu, a competitor of NEC Co, acquired Fairchild Inc.", # 2
     "Fujitsu is expanding." +
     "The company made an offer to acquire 80% of Fairchild Inc.", # 3
     "Fujitsu plans to acquire 80% of Fairchild Corp.", # 4
     "Fujitsu plans not to acquire Fairchild Corp.", # 5
     "The competition forced Fujitsu to acquire Fairchild Corp." # 6
]

acq_synonyms = ['acquire', 'buy', 'purchase']
for i, text in enumerate(texts):
    doc = nlp(text)
    rels = extract_rel_dep(doc, 'acquires', acq_synonyms, ['to', 'from'])
    print(f'{i+1}:', *rels)

Out:

1: (('Fujitsu', 'ORG'), 'acquires', ('Fairchild', 'ORG'))
2: (('Fujitsu', 'ORG'), 'acquires', ('Fairchild', 'ORG'))
3: (('Fujitsu', 'ORG'), 'acquires', ('Fairchild', 'ORG'))
4: (('Fujitsu', 'ORG'), 'acquires', ('Fairchild', 'ORG'))
5: (('Fujitsu', 'ORG'), 'acquires', ('Fairchild', 'ORG'))
6:

As we can see, the relations in the first four sentences have been correctly extracted.
Sentence 5, however, contains a negation and still returns acquires. This is a typical
case of a false positive. We could extend our rules to handle this case correctly, but
negations are rare in our corpus, and we accept the uncertainty in favor of the simpler
algorithm. Sentence 6, in contrast, is an example for a possible false negative. Even
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though the relation was mentioned, it was not detected because the subject in this
sentence is competition and not one of the companies.

Actually, dependency-based rules are inherently complex, and every approach to
make them more precise results in even more complexity. It is a challenge to find a
good balance between precision (fewer false positives) and recall (fewer false nega‐
tives) without making the code too complex.

Despite those deficiencies, the dependency-based rule still yields good results. This
last step in the process, however, depends on the correctness of named-entity recog‐
nition, coreference resolution, and dependency parsing, all of which are not working
with 100% accuracy. So, there will always be some false positives and false negatives.
But the approach is good enough to produce highly interesting knowledge graphs, as
we will do in the next section.

Creating the Knowledge Graph
Now that we know how to extract certain relationships, we can put everything
together and create a knowledge graph from the entire Reuters corpus. We will
extract organizations, persons and the four relations “acquires,” “sells,” “subsidiary-
of,” and “executive-of.” Figure 12-6 shows the resulting graph with some selected
subgraphs.

To get the best results in dependency parsing and named-entity recognition, we use 
spaCy’s large model with our complete pipeline. If possible, we will use the GPU to
speed up NLP processing:

if spacy.prefer_gpu():
    print("Working on GPU.")
else:
    print("No GPU found, working on CPU.")
nlp = spacy.load('en_core_web_lg')

pipes = [entity_ruler, norm_entities, merge_entities,
         init_coref, alias_resolver, name_resolver,
         neural_coref, anaphor_coref, norm_names]
for pipe in pipes:
    nlp.add_pipe(pipe)

Before we start the information extraction process, we create two additional rules for
the “executive-of ” relation similar to the “subsidiary-of ” relation and add them to our 
rule-based matcher:

ceo_synonyms = ['chairman', 'president', 'director', 'ceo', 'executive']
pattern = [{'ENT_TYPE': 'PERSON'},
           {'ENT_TYPE': {'NOT_IN': ['ORG', 'PERSON']}, 'OP': '*'},
           {'LOWER': {'IN': ceo_synonyms}}, {'TEXT': 'of'},
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           {'ENT_TYPE': {'NOT_IN': ['ORG', 'PERSON']}, 'OP': '*'},
           {'ENT_TYPE': 'ORG'}]
matcher.add('executive-of', None, pattern)

pattern = [{'ENT_TYPE': 'ORG'},
           {'LOWER': {'IN': ceo_synonyms}},
           {'ENT_TYPE': 'PERSON'}]
matcher.add('rev-executive-of', None, pattern)

Figure 12-6. The knowledge graph extracted from the Reuters corpus with three selected
subgraphs (visualized with the help of Gephi).

We then define one function to extract all relationships. Two of our four relations are
covered by the matcher, and the other two by the dependency-based matching
algorithm:

def extract_rels(doc):
    yield from extract_rel_match(doc, matcher)
    yield from extract_rel_dep(doc, 'acquires', acq_synonyms, ['to', 'from'])
    yield from extract_rel_dep(doc, 'sells', ['sell'], ['to', 'from'])

The remaining steps to extract the relations, convert them into a NetworkX graph,
and store the graph in a gexf file for Gephi are basically following “Blueprint: Creat‐
ing a Co-Occurrence Graph” on page 342. We skip them here, but you will find the
full code again in the GitHub repository.
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Here are a few records of the final data frame containing the nodes and edges of the
graph as they are written to the gexf file:

subj subj_type pred obj obj_type freq articles

883 Trans World
Airlines

ORG acquires USAir Group ORG 7 2950,2948,3013,3095,1862,1836,7650

152 Carl Icahn PERSON executive-of Trans World
Airlines

ORG 3 1836,2799,3095

884 Trans World
Airlines

ORG sells USAir Group ORG 1 9487

The visualization of the Reuters graph in Figure 12-6 was again created with the help
of Gephi. The graph consists of many rather small components (disconnected sub‐
graphs); because most companies got mentioned in only one or two news articles and
we extracted only the four relations, simple co-occurrences are not included here. We
manually magnified three of those subgraphs in the figure. They represent company
networks that already appeared in the co-occurrence graph (Figure 12-5), but now we
know the relation types and get a much clearer picture.

Don’t Blindly Trust the Results
Each processing step we went through has a potential of errors. Thus, the information
stored in the graph is not completely reliable. In fact, this starts with data quality in
the articles themselves. If you look carefully at the upper-left example in Figure 12-6,
you will notice that the two entities “Fujitsu” and “Futjitsu” appear in the graph. This
is indeed a spelling error in the original text.

In the magnified subnetwork to the right in Figure 12-6 you can spot the seemingly
contradictory information that “Piedmont acquires USAir” and “USAir acquires
Piedmont.” In fact, both are true because both enterprises acquired parts of the shares
of the other one. But it could also be a mistake by one of the involved rules or models.
To track this kind of problem, it is indispensable to store some information about the
source of the extracted relations. That’s why we included the list of articles in every
record.

Finally, be aware that our analysis did not consider one aspect at all: the timeliness of
information. The world is constantly changing and so are the relationships. Each
edge in our graph should therefore get time stamped. So, there is still much to be
done to create a knowledge base with trustable information, but our blueprint pro‐
vides a solid foundation for getting started.
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Closing Remarks
In this chapter, we explored how to build a knowledge graph by extracting structured
information from unstructured text. We went through the whole process of informa‐
tion extraction, from named-entity recognition via coreference resolution to relation
extraction.

As you have seen, each step is a challenge in itself, and we always have the choice
between a rule-based and a model-based approach. Rule-based approaches have the
advantage that you don’t need training data. So, you can start right away; you just
need to define the rules. But if the entity type or relationship you try to capture is
complex to describe, you end up either with rules that are too simple and return a lot
of false matches or with rules that are extremely complex and hard to maintain.
When using rules, it is always difficult to find a good balance between recall (find
most of the matches) and precision (find only correct matches). And you need quite a
bit of technical, linguistic, and domain expertise to write good rules. In practice, you
will also have to test and experiment a lot until your rules are robust enough for your
application.

Model-based approaches, in contrast, have the great advantage that they learn those
rules from the training data. Of course, the downside is that you need lots of high-
quality training data. And if those training data are specific to your application
domain, you have to create them yourself. The manual labeling of training data is
especially cumbersome and time-consuming in the area of text because somebody
has to read and understand the text before the labels can be set. In fact, getting good
training data is the biggest bottleneck today in machine learning.

A possible solution to the problem of missing training data is weak supervision. The
idea is to create a large dataset by rules like the ones we defined in this chapter or
even to generate them programmatically. Of course, this dataset will be noisy, as the
rules are not perfect. But, surprisingly, it is possible to train a high-quality model on
low-quality data. Weak supervision learning for named-entity recognition and rela‐
tionship extraction is, like many other topics covered in this section, a current topic
of research. If you want to learn more about the state of the art in information extrac‐
tion and knowledge graph creation, you can check out the following references. They
provide good starting points for further reading.
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CHAPTER 13

Using Text Analytics in Production

We have introduced several blueprints so far and understood their application to
multiple use cases. Any analysis or machine learning model is most valuable when it
can be used easily by others. In this chapter, we will provide blueprints that will allow
you to share the text classifier from one of our earlier chapters and also deploy to a
cloud environment allowing anybody to make use of what we’ve built.

Consider that you used one of the blueprints in Chapter 10 in this book to analyze
various car models using data from Reddit. If one of your colleagues was interested in
doing the same analysis for the motorcycle industry, it should be simple to change the
data source and reuse the code. In practice, this can prove much more difficult
because your colleague will first have to set up an environment similar to the one you
used by installing the same version of Python and all the required packages. It’s possi‐
ble that they might be working on a different operating system where the installation
steps are different. Or consider that the clients to whom you presented the analysis
are extremely happy and come back three months later asking you to cover many
more industries. Now you have to repeat the same analysis but ensure that the code
and environment remain the same. The volume of data for this analysis could be
much larger, and your system resources may not be sufficient enough, prompting a
move to use cloud computing resources. You would have to go through the installa‐
tion steps on a cloud provider, and this can quickly become time-consuming.

What You’ll Learn and What We’ll Build
Often what happens is that you are able to produce excellent results, but they remain
unusable because other colleagues who want to use them are unable to rerun the code
and reproduce the results. In this chapter, we will show you some techniques that can
ensure that your analysis or algorithm can be easily repeated by anyone else, includ‐
ing yourself at a later stage. What if we are able to make it even easier for others to
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use the output of our analysis? This removes an additional barrier and increases the
accessibility of our results. We will show you how you can deploy your machine
learning model as a simple REST API that allows anyone to use the predictions from
your model in their own work or applications. Finally, we will show you how to make
use of cloud infrastructure for faster runtimes or to serve multiple applications and
users. Since most production servers and services run Linux, this chapter includes a
lot of executable commands and instructions that run best in a Linux shell or termi‐
nal. However, they should work just as well in Windows PowerShell.

Blueprint: Using Conda to Create Reproducible
Python Environments
The blueprints introduced in this book use Python and the ecosystem of

packages to accomplish several text analytics tasks. As with any programming lan‐
guage, Python has frequent updates and many supported versions. In addition, com‐
monly used packages like Pandas, NumPy, and SciPy also have regular release cycles
when they upgrade to a new version. While the maintainers try to ensure that newer
versions are backward compatible, there is a risk that an analysis you completed last
year will no longer be able to run with the latest version of Python. Your blueprint
might have used a method that is deprecated in the latest version of a library, and this
would make your analysis nonreproducible without knowing the version of the
library used.

Let’s suppose that you share a blueprint with your colleague in the form of a Jupyter
notebook or a Python module; one of the common errors they might face when try‐
ing to run is as shown here:

import spacy

Out:

---------------------------------------------------------------------------
ModuleNotFoundError                       Traceback (most recent call last)
<ipython-input-1-76a01d9c502b> in <module>
----> 1 import spacy
ModuleNotFoundError: No module named 'spacy'

In most cases, ModuleNotFoundError can be easily resolved by manually installing the
required package using the command pip install <module_name>. But imagine
having to do this for every nonstandard package! This command also installs the lat‐
est version, which might not be the one you originally used. As a result, the best way
to ensure reproducibility is to have a standardized way of sharing the Python envi‐
ronment that was used to run the analysis. We make use of the conda package man‐
ager along with the Miniconda distribution of Python to solve this problem.
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There are several ways to solve the problem of creating and sharing
Python environments, and conda is just one of them. pip is the
standard Python package installer that is included with Python and
is widely used to install Python packages. venv can be used to cre‐
ate virtual environments where each environment can have its own
version of Python and set of installed packages. Conda combines
the functionality of a package installer and environment manager
and therefore is our preferred option. It’s important to distinguish
conda from the Anaconda/Miniconda distributions. These distri‐
butions include Python and conda along with essential packages
required for working with data. While conda can be installed
directly with pip, the easiest way is to install Miniconda, which is a
small bootstrap version that contains conda, Python, and some
essential packages they depend on.

First, we must install the Miniconda distribution with the following steps. This will
create a base installation containing just Python, conda, and some essential packages
like pip, zlib, etc. We can now create separate environments for each project that
contains only the packages we need and are isolated from other such environments.
This is useful since any changes you make such as installing additional packages
or upgrading to a different Python version does not impact any other project or
application as they use their own environment. We can do so by using the following
command:

conda create -n env_name [list_of_packages]

Executing the previous command will create a new Python environment with the
default version that was available when Miniconda was installed the first time. Let’s
create our environment called blueprints where we explicitly specify the version of
Python and the list of additional packages that we would like to install as follows:

$ conda create -n blueprints numpy pandas scikit-learn notebook python=3.8
Collecting package metadata (current_repodata.json): - done
Solving environment: \ done
 Package Plan
  environment location: /home/user/miniconda3/envs/blueprints
  added / updated specs:
    - notebook
    - numpy
    - pandas
    - python=3.8
    - scikit-learn

The following packages will be downloaded:

    package                    |            build
    ---------------------------|-----------------
    blas-1.0                   |              mkl           6 KB
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    intel-openmp-2020.1        |              217         780 KB
    joblib-0.16.0              |             py_0         210 KB
    libgfortran-ng-7.3.0       |       hdf63c60_0        1006 KB
    mkl-2020.1                 |              217       129.0 MB
    mkl-service-2.3.0          |   py37he904b0f_0         218 KB
    mkl_fft-1.1.0              |   py37h23d657b_0         143 KB
    mkl_random-1.1.1           |   py37h0573a6f_0         322 KB
    numpy-1.18.5               |   py37ha1c710e_0           5 KB
    numpy-base-1.18.5          |   py37hde5b4d6_0         4.1 MB
    pandas-1.0.5               |   py37h0573a6f_0         7.8 MB
    pytz-2020.1                |             py_0         184 KB
    scikit-learn-0.23.1        |   py37h423224d_0         5.0 MB
    scipy-1.5.0                |   py37h0b6359f_0        14.4 MB
    threadpoolctl-2.1.0        |     pyh5ca1d4c_0          17 KB
    ------------------------------------------------------------
                                           Total:       163.1 MB

The following NEW packages will be INSTALLED:

  _libgcc_mutex      pkgs/main/linux-64::_libgcc_mutex-0.1-main
  attrs              pkgs/main/noarch::attrs-19.3.0-py_0
  backcall           pkgs/main/noarch::backcall-0.2.0-py_0
  blas               pkgs/main/linux-64::blas-1.0-mkl
  bleach             pkgs/main/noarch::bleach-3.1.5-py_0
  ca-certificates    pkgs/main/linux-64::ca-certificates-2020.6.24-0

(Output truncated)

Once the command has been executed, you can activate it by executing conda acti
vate <env_name>, and you will notice that the command prompt is prefixed with the
name of the environment. You can further verify that the version of Python is the
same as you specified:

$ conda activate blueprints
(blueprints) $ python --version
Python 3.8

You can see the list of all environments on your system by using the command conda
env list, as shown next. The output will include the base environment, which is the
default environment created with the installation of Miniconda. An asterisk against a
particular environment indicates the currently active one, in our case the environ‐
ment we just created. Please make sure that you continue to use this environment
when you work on your blueprint:

(blueprints) $ conda env list
# conda environments:
#
base                     /home/user/miniconda3
blueprints            *  /home/user/miniconda3/envs/blueprints
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conda ensures that each environment can have its own versions of the same package,
but this could come at the cost of increased storage since the same version of each
package will be used in more than one environment. This is mitigated to a certain
extent with the use of hard links, but it may not work in cases where a package uses
hard-coded paths. However, we recommend creating another environment when you
switch projects. But it is a good practice to remove unused environments using the
command conda remove --name <env_name> --all.

The advantage of this approach is that when you want to share the code with some‐
one else, you can specify the environment in which it should run. You can export the
environment as a YAML file using the command conda env export > environ
ment.yml. Ensure that you are in the desired environment (by running conda acti
vate <environment_name>) before running this command:

(blueprints) $ conda env export > environment.yml
(blueprints) $ cat environment.yml
name: blueprints
channels:
  - defaults
dependencies:
  - _libgcc_mutex=0.1=main
  - attrs=19.3.0=py_0
  - backcall=0.2.0=py_0
  - blas=1.0=mkl
  - bleach=3.1.5=py_0
  - ca-certificates=2020.6.24=0
  - certifi=2020.6.20=py37_0
  - decorator=4.4.2=py_0
  - defusedxml=0.6.0=py_0
  - entrypoints=0.3=py37_0
  - importlib-metadata=1.7.0=py37_0
  - importlib_metadata=1.7.0=0
  - intel-openmp=2020.1=217
  - ipykernel=5.3.0=py37h5ca1d4c_0
(output truncated)

As shown in the output, the environment.yml file creates a listing of all the packages
and their dependencies used in the environment. This file can be used by anyone to
re-create the same environment by running the command conda env create -f
environment.yml. However, this method can have cross-platform limitations since
the dependencies listed in the YAML file are specific to the platform. So if you were
working on a Windows system and exported the YAML file, it may not necessarily
work on a macOS system.

This is because some of the dependencies required by a Python package are platform-
dependent. For instance, the Intel MKL optimizations are specific to a certain archi‐
tecture and can be replaced with the OpenBLAS library. To provide a generic
environment file, we can use the command conda env export --from-history >
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environment.yml, which generates a listing of only the packages that were explicitly
requested by you. You can see the following output of running this command, which
lists only the packages we installed when creating the environment. Contrast this with
the previous environment file that also listed packages like attrs and backcall,
which are part of the conda environment but not requested by us. When such a
YAML file is used to create an environment on a new platform, the default packages
and their platform-specific dependencies will be identified and installed automatically
by conda. In addition, the packages that we explicitly specified and their dependen‐
cies will be installed:

(blueprints) $ conda env export --from-history > environment.yml
(blueprints) $ cat environment.yml
name: blueprints
channels:
  - defaults
dependencies:
  - scikit-learn
  - pandas
  - notebook
  - python=3.8
  - numpy
prefix: /home/user/miniconda3/envs/blueprints

The disadvantage of using the --from-history option is that the created environ‐
ment is not a replica of the original environment since the base packages and depen‐
dencies are platform specific and hence different. If the platform where this
environment is to be used is the same, then we do not recommend using this option.

Blueprint: Using Containers to Create
Reproducible Environments
While a package manager like conda helps in installing multiple packages

and managing dependencies, there are several platform-dependent binaries that can
still hinder reproducibility. To make things simpler, we make use of a layer of abstrac‐
tion called containers. The name is derived from the shipping industry, where
standard-sized shipping containers are used to transport all kinds of goods by ships,
trucks, and rail. Regardless of the type of items or the mode of transport, the shipping
container ensures that anyone adhering to that standard can transport those items. In
a similar fashion, we use a Docker container to standardize the environment we work
in and guarantee that an identical environment is re-created every time regardless of
where it runs or who runs it. Docker is one of the most popular tools that enables this
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functionality, and we will make use of it in this blueprint. Figure 13-1 shows a high-
level overview of how Docker works.

Figure 13-1. Workflow of Docker.

We need to start by installing Docker from the download link. Once it has been set
up, please run sudo docker run hello-world from the command line to test that
everything has been set up correctly, and you should see the output as shown. Please
note that the Docker daemon binds to a Unix socket that is owned by the root user,
hence the need to run all commands with sudo. If you are unable to provide root
access, there is an experimental version of Docker that you can also try:

$ sudo docker run hello-world

Hello from Docker!
This message shows that your installation appears to be working correctly.

To generate this message, Docker took the following steps:
 1. The Docker client contacted the Docker daemon.
 2. The Docker daemon pulled the "hello-world" image from the Docker Hub.
    (amd64)
 3. The Docker daemon created a new container from that image which runs the
    executable that produces the output you are currently reading.
 4. The Docker daemon streamed that output to the Docker client, which sent it
    to your terminal.

To try something more ambitious, you can run an Ubuntu container with:
 $ docker run -it ubuntu bash

Share images, automate workflows, and more with a free Docker ID:
 https://hub.docker.com/

For more examples and ideas, visit:
 https://docs.docker.com/get-started/
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We can draw an analogy between building a Docker container and purchasing a car.
We start by choosing from one of the preconfigured options. These configurations
already have some components selected, such as the type of engine (displacement,
fuel-type), safety features, level of equipment, etc. We can customize many of these
components, for example, upgrade to a more fuel-efficient engine or add additional
components like a navigation system or heated seats. At the end, we decide on our
preferred configuration and order the car. In a similar way, we specify the configura‐
tion of the environment we want to create in the Dockerfile. These are described in
the form of a set of instructions, executed in a sequential manner resulting in the cre‐
ation of a Docker image. A Docker image is like the preferred car configuration that
can be created based on our Dockerfile. All Docker images are extensible, so instead
of defining all steps, we could extend an existing Docker image and customize it by
adding specific steps that we would like. The final step of running a Docker image
results in the creation of a Docker container, which is like the car with your preferred
configuration delivered to you. In this case, it is a full-fledged environment including
an operating system and additional utilities and packages as specified in the Docker‐
file. It runs on the hardware and uses the interfaces provided by the host system but is
completely isolated from it. In effect, it is a minimal version of a server running the
way you designed it. Each Docker container instantiated from the same image will be
the same regardless of which host system it is running on. This is powerful as it
allows you to encapsulate your analysis and environment and run it on your laptop,
in the cloud, or on your organization’s server and expect the same behavior.

We are going to create a Docker image with the same Python environment as used in
our analysis so that anyone else can reproduce our analysis by pulling the image and
instantiating it as a container. While we can start by specifying our Docker image
from scratch, it would be preferable to start with an existing image and customize
certain parts of it to create our version. Such an image is referred to as a parent image.
A good place to search for parent images is the Docker Hub registry, which is a public
repository containing prebuilt Docker images. You will find officially supported
images like the Jupyter Data Science notebook as well as user-created images like the
one we have created for Chapter 9 that can be accessed here. Every image in the
Docker repository can also be used as is to run containers. You can search for images
using the sudo docker search command and add arguments to format results, as
shown here where we search for available Miniconda images:

$ sudo docker search miniconda
NAME                                        STARS
continuumio/miniconda3                      218
continuumio/miniconda                       77
conda/miniconda3                            35
conda/miniconda3-centos7                    7
yamitzky/miniconda-neologd                  3
conda/miniconda2                            2
atavares/miniconda-rocker-geospatial        2
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We see that there is an image for Miniconda3 that would be a good starting point for
our own Dockerfile. Note that all Dockerfiles have to start with the FROM keyword
specifying which image they are deriving from. If you are specifying a Dockerfile
from the start, then you would use the FROM scratch keyword. The details of the
Miniconda image and the Dockerfile show how this image derives from a Debian
parent image and only adds additional steps to install and set up the conda package
manager. When using a parent Docker image, it’s important to check that it’s from a
trusted source. Docker Hub provides additional criteria like “Official Images” that
can be helpful in identifying an official source.

Let’s walk through the steps defined in our Dockerfile. We start with the Miniconda3
image and then add a step to create our custom environment. We use the ARG instruc‐
tion to specify the argument for the name of our conda environment (blueprints). We
then use ADD to copy the environment.yml file from the build context to the image.
Finally, we create the conda environment by providing the conda create command
as an argument to RUN:

FROM continuumio/miniconda3

# Add environment.yml to the build context and create the environment
ARG conda_env=blueprints
ADD environment.yml /tmp/environment.yml
RUN conda env create -f /tmp/environment.yml

In the next set of steps, we want to ensure that the environment is activated in the
container. Therefore, we add it to the end of the .bashrc script, which will always run
when the container starts. We also update the PATH environment variable using the
ENV instruction to ensure that the conda environment is the version of Python used
everywhere within the container:

# Activating the environment and starting the jupyter notebook
RUN echo "source activate ${conda_env}" > ~/.bashrc
ENV PATH /opt/conda/envs/${conda_env}/bin:$PATH

In the final step, we want to automatically start a Jupyter notebook that will allow the
users of this Docker container to run the analysis in an interactive fashion. We use the
ENTRYPOINT instruction, which is used to configure a container that will run as an
executable. There can be only one such instruction in a Dockerfile (if there are multi‐
ple, only the last one will be valid), and it will be the last command to run when a
container comes up and is typically used to start a server like the Jupyter notebook
that we want to run. We specify additional arguments to run the server on the IP
address of the container itself (0.0.0.0), on a particular port (8888), as the root user
(--allow-root), and not open a browser by default (--no-browser). When the con‐
tainer starts, we don’t want it to open the Jupyter server in its browser. Instead, we
will attach the host machine to this container using the specified port and access it via
the browser there:
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# Start jupyter server on container
EXPOSE 8888
ENTRYPOINT ["jupyter","notebook","--ip=0.0.0.0", \
      "--port=8888","--allow-root","--no-browser"]

We use the docker build command to create the image from our Dockerfile. We
specify the name of our image with the -t parameter and add a username followed by
the name of the image. This is useful in identifying our image when we want to refer
to it later. It is not mandatory to specify a username, but we will see later why this is
useful. The Dockerfile to be used while building the image is specified with the -f
parameter. If nothing is specified, then Docker will pick the file named Dockerfile in
the directory specified by the argument PATH. The PATH argument also specifies where
to find the files for the “context” of the build on the Docker daemon. All the files in
this directory are packaged with tar and sent to the daemon during the build pro‐
cess. This must include all the files and artifacts that have to be added to the image,
e.g., the environment.yml file, which will be copied to the image to create the conda
environment.

docker build -t username/docker_project -f Dockerfile [PATH]

On executing this command, the Docker daemon starts creating an image by running
the steps specified in the Dockerfile. Typically, you would execute the command in
the same directory that already contains all the files and the Dockerfile as well. We
specify the PATH argument using . referring to the current directory:

$ sudo docker build -t textblueprints/ch13:v1 .
Sending build context to Docker daemon  5.363MB
Step 1/8 : FROM continuumio/miniconda3
 ---> b4adc22212f1
Step 2/8 : ARG conda_env=blueprints
 ---> 959ed0c16483
Step 3/8 : ADD environment.yml /tmp/environment.yml
 ---> 60e039e09fa7
Step 4/8 : RUN conda env create -f /tmp/environment.yml
 ---> Running in 85d2f149820b
Collecting package metadata (repodata.json): ...working... done
Solving environment: ...working... done

Downloading and Extracting Packages

(output truncated)

Removing intermediate container 85d2f149820b
Step 5/8 : RUN echo "source activate ${conda_env}" > ~/.bashrc
 ---> e0ed2b448211
Step 6/8 : ENV PATH /opt/conda/envs/${conda_env}/bin:$PATH
 ---> 7068395ce2cf
Step 7/8 : EXPOSE 8888
 ---> Running in f78ac4aa0569
Removing intermediate container f78ac4aa0569

368 | Chapter 13: Using Text Analytics in Production



 ---> 06cfff710f8e
Step 8/8 : ENTRYPOINT ["jupyter","notebook","--ip=0.0.0.0",
                       "--port=8888","--allow-root","--no-browser"]
 ---> Running in 87852de682f4
Removing intermediate container 87852de682f4
 ---> 2b45bb18c071
Successfully built 2b45bb18c071
Successfully tagged textblueprints/ch13:v1

After the build completes, you can check whether the image was created successfully
by running the command sudo docker images. You will notice that continuumio/
miniconda3 image has been downloaded, and in addition, the image specified with
your username and docker_project has also been created. Building a Docker will
take longer the first time since the parent images have to be downloaded, but subse‐
quent changes and rebuilds will be much faster:

$ sudo docker images
REPOSITORY                          TAG                 IMAGE ID
textblueprints/ch13                 v1                  83a05579afe6
jupyter/minimal-notebook            latest              d94723ae86d1
continuumio/miniconda3              latest              b4adc22212f1
hello-world                         latest              bf756fb1ae65

We can create a running instance of this environment, also called container, by
running:

docker run -p host_port:container_port username/docker_project:tag_name

The -p argument allows port forwarding, essentially sending any requests received on
the host_port to the container_port. By default, the Jupyter server can only access
the files and directories within the container. However, we would like to access the
Jupyter notebooks and code files present in a local directory from the Jupyter server
running inside the container. We can attach a local directory to the container as a vol‐
ume by using -v host_volume:container_volume, which will create a new directory
within the container pointing to a local directory. This ensures that any changes made
to the Jupyter notebooks are not lost when the container shuts down. This is the rec‐
ommended approach to work with files locally but using a Docker container for the
reproducible environment. Let’s start our Docker container by running the following
command:

sudo docker run -p 5000:8888 -v \
/home/user/text-blueprints/ch13/:/work textblueprints/ch13:v1

Out:

[NotebookApp] Writing notebook server cookie secret to
/root/.local/share/jupyter/runtime/notebook_cookie_secret
[NotebookApp] Serving notebooks from local directory: /
[NotebookApp] The Jupyter Notebook is running at:
[NotebookApp] http://aaef990b90a3:8888/?token=xxxxxx
[NotebookApp]  or http://127.0.0.1:8888/?token=xxxxxx
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[NotebookApp] Use Control-C to stop this server and shut down all kernels
(twice to skip confirmation).
[NotebookApp]

    To access the notebook, open this file in a browser:
        file:///root/.local/share/jupyter/runtime/nbserver-1-open.html
    Or copy and paste one of these URLs:
        http://aaef990b90a3:8888/?token=xxxxxx
     or http://127.0.0.1:8888/?token=xxxxxx

The logs you see now are actually the logs of the Jupyter server starting in port 8888
within the container. Since we have mapped the host port 5000, you can copy the
URL and only replace the port number to 5000 to access the Jupyter server. You will
also find here a directory called work, which should contain all the files from the local
directory that was mapped. You can also check the status of all running containers by
running the command sudo docker container ps. We can also specify the name for
each running container by using the --name argument, and if this is not used, the
Docker daemon will assign a randomly created one, as you see here:

$ sudo docker container ls
CONTAINER ID        IMAGE                    STATUS              NAMES
862e5b0570fe        textblueprints/ch13:v1   Up About a minute   musing_chaum

If you quit the terminal window where you ran this command, then the container will
also be shut down. To run it in a detached mode, just add the -d option to the run
command. When the container starts, it will print the container ID of the started con‐
tainer, and you can monitor the logs using sudo docker logs <container-id>. We
have reproduced the complete environment used to run our analysis in this Docker
container, and in the next blueprint, let’s see the best techniques to share it.

The easiest way to share this image with anyone is by pushing this to the Docker Hub
registry. You can sign up for a free account. Docker Hub is a public repository for
Docker images, and each image is uniquely identified by the username, the name of
the image, and a tag. For example, the miniconda3 package that we used as our parent
image is identified as continuumio/miniconda3:latest, and any images that you
share will be identified with your username. Therefore, when we built our image ear‐
lier, the username we specified must have been the same as the one used to log in to
Docker Hub. Once you have created your credentials, you can click Create a Reposi‐
tory and choose a name and provide a description for your repository. In our case we
created a repository called "ch13" that will contain a Docker image for this chapter.
Once done, you can log in using the command sudo docker login and enter your
username and password. For added security, please follow the instructions to securely
store your password.
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By default, during the build process of a Docker image, all of the
directories and files present in the PATH argument are part of the
build context. In a previous command, we indicated the path to be
the current directory using the . symbol. This is not necessary
since we need to include only the selected list of files that are
needed for the build and later the container. For instance, we need
environment.yml but not the Jupyter notebook (.ipynb) file. It’s
important to specify the list of excluded files in the .dockerignore
file to ensure that unwanted files do not automatically get added to
the container. Our .dockerignore file is as shown here:

  .git
  .cache
  figures
  **/*.html
  **/*.ipynb
  **/*.css
  

Another thing to ensure is that the host_port (specified as 5000 in
the blueprint) is open and not used by any other application on
your system. Ideally, you must use a port number between 1024–
49151 as these are user ports, but you can also check this easily by
running the command sudo ss -tulw, which will provide the list
of used ports.

The next step is to tag the image that you would like to share with a tag_name to
identify what it contains. In our case, we tag the image with v1 to signify that it is the
first version for this chapter. We run the command sudo docker tag 2b45bb18c071
textblueprints/ch13:v1, where 2b45bb18c071 is the image ID. We can push our
file now with the command sudo docker push textblueprints/ch13. Now anyone
who wants to run your project can simply run the command docker pull

your_username/docker_project:tag_name to create the same environment as you,
irrespective of the system they might be personally working on. As an example, you
can start working on blueprints in Chapter 9 by simply running the command docker
pull textblueprints/ch09:v1. You can then attach the volume of the directory
containing the cloned repository. Docker Hub is a popular public registry and config‐
ured as default with Docker, but each cloud provider also has their own version, and
many organizations set up private registries for use within their internal applications
and teams.

When working with conda environments with multiple scientific computing pack‐
ages, Docker images can get large and therefore create a strain on bandwidth while
pushing to Docker Hub. A much more efficient way is to include the Dockerfile in the
base path of your repository. For example, the GitHub repo containing the code for
this chapter contains a Dockerfile, which can be used to create the exact environment
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required to run the code. This blueprint easily allows you to move an analysis from
your local system to a cloud machine with additional resources by re-creating the
same working environment. This is especially useful when the size of the data increa‐
ses or an analysis takes too long to finish.

Blueprint: Creating a REST API for Your Text
Analytics Model
Let’s say you used the blueprint provided in Chapter 11 to analyze the sen‐

timent of customer support tickets in your organization. Your company is running a
campaign to improve customer satisfaction where they would like to provide vouch‐
ers to unhappy customers. A colleague from the tech team reaches out to you for help
with automating this campaign. While they can pull the Docker container and repro‐
duce your analysis, they would prefer a simpler method where they provide the text
of the support ticket and get a response of whether this is an unhappy customer. By 
encapsulating our analysis in a REST API, we can create a simple method that is
accessible to anyone without them having to rerun the blueprint. They don’t even
necessarily need to know Python since a REST API can be called from any language.
In Chapter 2, we made use of REST APIs provided by popular websites to extract
data, whereas in this blueprint we are going to create our own.

We will make use of the following three components to host our REST API:

• FastAPI: A fast web framework for building APIs
• Gunicorn: A Web Service Gateway Interface server that handles all the incoming

requests
• Docker: Extending the Docker container that we used in the previous blueprint

Let’s create a new folder called app where we will place all the code that we require in
order to serve sentiment predictions. It will follow the directory structure and contain
files as shown next. main.py is where we will create the FastAPI app and the senti‐
ment prediction method, and preprocessing.py is where our helper functions are
included. The models directory contains the trained models we need to use to calcu‐
late our predictions, in our case the sentiment_vectorizer and sentiment_classi
fication. Finally, we have the Dockerfile, environment.yml, and start_script.sh, which
will be used to deploy our REST API:

├── app
│   ├── main.py
│   ├── Dockerfile
│   ├── environment.yml
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│   ├── models
│   │   ├── sentiment_classification.pickle
│   │   └── sentiment_vectorizer.pickle
│   ├── preprocessing.py
│   └── start_script.sh

FastAPI is a fast Python framework used to build APIs. It is capable of redirecting
requests from a web server to specific functions defined in Python. It also takes care
of validating the incoming requests against specified schema and is useful for creating
a simple REST API. We will encapsulate the predict function of the model we trained
in Chapter 11 in this API. Let’s walk through the code in the file main.py step-by-step
and explain how it works. You can install FastAPI by running pip install fastapi
and Gunicorn by running pip install gunicorn.

Once FastAPI is installed, we can create an app using the following code:

from fastapi import FastAPI
app = FastAPI()

The FastAPI library runs this app using the included web server and can route
requests received at an endpoint to a method in the Python file. This is specified by
adding the @app.post attribute at the start of the function definition. We specify the
endpoint to be api/v1/sentiment, the first version of our Sentiment API, which accepts
HTTP POST requests. An API can evolve over time with changes to functionality,
and it’s useful to separate them into different versions to ensure that users of the older
version are not affected:

class Sentiment(Enum):
    POSITIVE = 1
    NEGATIVE = 0

@app.post("/api/v1/sentiment", response_model=Review)
def predict(review: Review, model = Depends(load_model())):
    text_clean = preprocessing.clean(review.text)
    text_tfidf = vectorizer.transform([text_clean])
    sentiment = prediction_model.predict(text_tfidf)
    review.sentiment = Sentiment(sentiment.item()).name
    return review

The predict method retrieves the text field from the input and performs the prepro‐
cessing and vectorization steps. It uses the model we trained earlier to predict the sen‐
timent of the product review. The returned sentiment is specified as an Enum class to
restrict the possible return values for the API. The input parameter review is defined
as an instance of the class Review. The class is as specified next and contains the text
of the review, a mandatory field along with reviewerID, productID, and sentiment.
FastAPI uses “type hints” to guess the type of the field (str) and perform the neces‐
sary validation. As we will see, FastAPI automatically generates a web documentation
for our API following the OpenAPI specification from which the API can be tested
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directly. We add the schema_extra as an example to act as a guide to developers who
want to use the API:

class Review(BaseModel):
    text: str
    reviewerID: Optional[str] = None
    asin: Optional[str] = None
    sentiment: Optional[str] = None

    class Config:
        schema_extra = {
            "example": {
                "text": "This was a great purchase, saved me much time!",
                "reviewerID": "A1VU337W6PKAR3",
                "productID": "B00K0TIC56"
            }
        }

You would have noticed the use of the Depends keyword in the function definition.
This allows us to load dependencies or other resources that are required before the
function is called. This is treated as another Python function and is defined here:

def load_model():
    try:
        print('Calling Depends Function')
        global prediction_model, vectorizer
        prediction_model = pickle.load(
            open('models/sentiment_classification.pickle', 'rb'))
        vectorizer = pickle.load(open('models/tfidf_vectorizer.pickle', 'rb'))
        print('Models have been loaded')
    except Exception as e:
        raise ValueError('No model here')

Pickle is a Python serialization framework that is one of the com‐
mon ways in which models can be saved/exported. Other standard‐
ized formats include joblib and ONNX. Some deep learning
frameworks use their own export formats. For example, Tensor‐
Flow uses SavedModel, while PyTorch uses pickle but implements
its own save() function. It’s important that you adapt the load and
predict functions based on the type of model save/export you have
used.

During development, FastAPI can be run with any web server (like uvicorn), but it is
recommended to use a full-fledged Web Service Gateway Interface (WSGI) server,
which is production ready and supports multiple worker threads. We choose to use
Gunicorn as our WSGI server as it provides us with an HTTP server that can receive
requests and redirect to the FastAPI app.
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Once installed, it can be run by entering:

gunicorn -w 3 -b :5000 -t 5 -k uvicorn.workers.UvicornWorker main:app

The -w argument is used to specify the number of worker processes to run, three
workers in this case. The -b parameter specifies the port that WSGI server listens on,
and the -t indicates a timeout value of five seconds after which the server will kill
and restart the app in case it’s not responsive. The -k argument specifies the instance
of worker class (uvicorn) that must be called to run the app, which is specified by
referring to the Python module (main) and the name (app).

Before deploying our API, we have to revisit the environment.yml file. In the first
blueprint, we described ways to generate and share the environment.yml file to ensure
that your analysis is reproducible. However, it is not recommended to follow this
method when deploying code to production. While the exported environment.yml file
is a starting point, we must inspect it manually and ensure that it does not contain
unused packages. It’s also important to specify the exact version number of a package
to ensure that package updates do not interfere with your production deployment.
We use a Python code analysis tool called Vulture that identifies unused packages as
well as other dead code fragments. Let’s run this analysis for the app folder:

vulture app/

Out:

app/main.py:11: unused variable 'POSITIVE' (60% confidence)
app/main.py:12: unused variable 'NEGATIVE' (60% confidence)
app/main.py:16: unused variable 'reviewerID' (60% confidence)
app/main.py:17: unused variable 'asin' (60% confidence)
app/main.py:20: unused class 'Config' (60% confidence)
app/main.py:21: unused variable 'schema_extra' (60% confidence)
app/main.py:40: unused variable 'model' (100% confidence)
app/main.py:44: unused attribute 'sentiment' (60% confidence)
app/preprocessing.py:30: unused import 'spacy' (90% confidence)
app/preprocessing.py:34: unused function 'display_nlp' (60% confidence)

Along with the list of potential issues, Vulture also provides a confidence score. Please
use the identified issues as pointers to check the use of these imports. In the previous
example, we know that the class variables we have defined are used to validate the
input to the API and are definitely used. We can see that even though spacy and dis
play_nlp are part of the preprocessing module, they are not used in our app. We can
choose to remove them and the corresponding dependencies from the YAML file.
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You can also determine the version of each package used in the conda environment
by running the conda list command and then use this information to create the
final cleaned-up environment YAML file, as shown here:

name: sentiment-app
channels:
  - conda-forge
dependencies:
  - python==3.8
  - fastapi==0.59.0
  - pandas==1.0.5
  - scikit-learn==0.23.2
  - gunicorn==20.0.4
  - uvicorn==0.11.3

As the final step, we can Dockerize the API so that it’s easier to run the entire app in
its own container, which is especially beneficial when we want to host it on a cloud
provider, as we will see in the next blueprint. We make two changes in the Dockerfile
from the previous blueprint as follows:

# Copy files required for deploying service to app folder in container
COPY . /app
WORKDIR /app

The previous instruction is used to COPY all of the contents of the current app folder
to the Docker image, which contains all of the files needed to deploy and run the
REST API. The current directory in the container is then changed to the app folder
by using the WORKDIR instruction:

# Start WSGI server on container
EXPOSE 5000
RUN ["chmod", "+x", "start_script.sh"]
ENTRYPOINT [ "/bin/bash", "-c" ]
CMD ["./start_script.sh"]

We then provide the steps to run the WSGI server by first exposing port 5000 on the
container. Next, we enable permissions on the start_script so that the Docker dae‐
mon can execute it at container startup. We use a combination of ENTRYPOINT (used
to start the bash shell in which the script is to be run) and CMD (used to specify the
actual script as an argument to the bash shell), which activates the conda environ‐
ment and starts the Gunicorn server. Since we are running the server within a Docker
container, we make a small change to specify the access-logfile to be written to
STDOUT (-) to ensure we can still view them:

#!/bin/bash
source activate my_env_name
GUNICORN_CMD_ARGS="--access-logfile -" gunicorn -w 3 -b :5000 -t 5 \
          -k uvicorn.workers.UvicornWorker main:app -
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We build the Docker image and run it following the same steps as in the previous
blueprint. This will result in a running Docker container where the Gunicorn WSGI
server is running the FastAPI app. We have to make sure that we forward a port from
the host system where the container is running:

$ sudo docker run -p 5000:5000 textblueprints/sentiment-app:v1
    [INFO] Starting gunicorn 20.0.4
    [INFO] Listening at: http://0.0.0.0:5000 (11)
    [INFO] Using worker: sync
    [INFO] Booting worker with pid: 14

We can make a call to the container running the API from a different program. In a
separate terminal window or IDE, create a test method that calls the API and passes
in a sample review to check the response. We make a call to port 5000 with the local
IP, which is forwarded to port 5000 of the container from which we receive the
response, as shown here:

import requests
import json

url = 'http://0.0.0.0:5000/api/v1/sentiment'
data = {
    'text':
    'I could not ask for a better system for my small greenhouse, \
     easy to set up and nozzles do very well',
    'reviewerID': 'A1VU337W6PKAR3',
    'productID': 'B00K0TIC56'
}
input_data = json.dumps(data)
headers = {'content-type': 'application/json', 'Accept-Charset': 'UTF-8'}
r = requests.post(url, data=input_data, headers=headers)
print(r.text)

Out:

{
  "prediction": "POSITIVE"
}

We can see that our API has generated the expected response. Let’s also check the
documentation of this API, which we can find at http://localhost:5000/docs. It should
generate a page as shown in Figure 13-2, and clicking the link for our /api/v1/senti
ment method will provide additional details on how the method is to be called and
also has the option to try it out. This allows others to provide different text inputs
and view the results generated by the API without writing any code.

Docker containers are always started in unprivileged mode, meaning that even if
there is a terminal error, it would only be restricted to the container without any
impact to the host system. As a result, we can run the server as a root user safely
within the container without worrying about an impact on the host system.
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Figure 13-2. API specification and testing provided by FastAPI.

You can run a combination of the sudo docker tag and sudo docker push com‐
mands discussed earlier to share the REST API. Your colleague could easily pull this
Docker image to run the API and use it to identify unhappy customers by providing
their support tickets. In the next blueprint, we will run the Docker image on a cloud
provider and make it available on the internet.

Blueprint: Deploying and Scaling Your API Using a
Cloud Provider
Deploying machine learning models and monitoring their performance is

a complex task and includes multiple tooling options. This is an area of constant
innovation that is continuously looking to make it easier for data scientists and devel‐
opers. There are several cloud providers and multiple ways to deploy and host your
API using one of them. This blueprint introduces a simple way to deploy the Docker
container we created in the previous blueprint using Kubernetes. Kubernetes is an
open source technology that provides functionality to deploy and manage Docker
containers to any underlying physical or virtual infrastructure. In this blueprint, we
will be using Google Cloud Platform (GCP), but most major providers have support
for Kubernetes. We can deploy the Docker container directly to a cloud service and

378 | Chapter 13: Using Text Analytics in Production

https://oreil.ly/C2KX2


make the REST API available to anyone. However, we choose to deploy this within a
Kubernetes cluster since it gives us the flexibility to scale up and down the deploy‐
ment easily.

You can sign up for a free account with GCP. By signing up with a cloud provider,
you are renting computing resources from a third-party provider and will be asked to
provide your billing details. During this blueprint, we will stay within the free-tier
limit, but it’s important to keep a close track of your usage to ensure that you are not
charged for some cloud resources that you forgot to shut down! Once you’ve comple‐
ted the sign-up process, you can check this by visiting the Billing section from the
GCP console. Before using this blueprint, please ensure that you have a Docker image
containing the REST API pushed and available in Docker Hub or any other container
registry.

Let’s start by understanding how we are going to deploy the REST API, which is illus‐
trated in Figure 13-3. We will create a scalable compute cluster using GCP. This is
nothing but a collection of individual servers that are called nodes. The compute clus‐
ter shown has three such nodes but can be scaled when needed. We will use Kuber‐
netes to deploy the REST API to each node of the cluster. Assuming we start with
three nodes, this will create three replicas of the Docker container, each running on
one node. These containers are still not exposed to the internet, and we make use of
Kubernetes to run a load balancer service, which provides a gateway to the internet
and also redirects requests to each container depending on its utilization. In addition
to simplifying our deployment process, the use of Kubernetes ensures that node fail‐
ures and traffic spikes can be handled by automatically creating additional instances.

Figure 13-3. Kubernetes architecture diagram.
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Let’s create a project in GCP that we will use for our deployment. Visit Google Cloud,
choose the Create Project option on the top right, and create a project with your
chosen name (we choose sentiment-rest-api). Once the project has been created, click
the navigation menu on the top left and navigate to the service called Kubernetes
Engine, as shown in Figure 13-4. You have to click the Enable Billing link and select
the payment account that you set up when you signed up. You can also click the Bill‐
ing tab directly and set it up for your project as well. Assuming you are using the free
trial to run this blueprint, you will not be charged. It will take a few minutes before it
gets enabled for our project. Once this is complete, we are ready to proceed with our
deployment.

Figure 13-4. Enable Billing in the Kubernetes Engine option in the GCP console.

We can continue to work with Google Cloud Platform using the web console or the
command-line tool. While the functionality offered remains the same, we choose to
describe the steps in the blueprint with the help of the command-line interface in the
interest of brevity and to enable you to copy the commands. Please install the Google
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Cloud SDK by following the instructions and then use the Kubernetes command-line
tool by running:

gcloud components install kubectl

In a new terminal window, we first authenticate our user account by running gcloud
auth login. This will open the browser and redirect you to the Google authentica‐
tion page. Once you have completed this, you won’t be asked for this again in this
terminal window. We configure the project and compute zone where we would like to
deploy our cluster. Use the project that we just created, and pick a location close to
you from all the available options; we chose us-central1-a:

gcloud config set project sentiment-rest-api

gcloud config set compute/zone us-central1-a

Our next step is to create a Google Kubernetes Engine compute cluster. This is the
compute cluster that we will use to deploy our Docker containers. Let’s create a clus‐
ter with three nodes and request a machine of type n1-standard-1. This type of
machine comes with 3.75GB of RAM and 1 CPU. We can request a more powerful
machine, but for our API this should suffice:

gcloud container clusters create \  sentiment-app-cluster --num-nodes 3 \
--machine-type n1-standard-1

Every container cluster in GCP comes with HorizontalPodAutoscaling, which takes
care of monitoring the CPU utilization and adding machines if required. The reques‐
ted machines will be provisioned and assigned to the cluster, and once it’s executed,
you can verify by checking the running compute instances with gcloud compute
instances list:

$ gcloud compute instances list
NAME                                   ZONE           MACHINE_TYPE   STATUS
gke-sentiment-app-cluste-default-pool  us-central1-a  n1-standard-1  RUNNING
gke-sentiment-app-cluste-default-pool  us-central1-a  n1-standard-1  RUNNING
gke-sentiment-app-cluste-default-pool  us-central1-a  n1-standard-1  RUNNING

Now that our cluster is up and running, we will deploy the Docker image we created
in the previous blueprint to this cluster with the help of Kubernetes. Our Docker
image is available on Docker Hub and is uniquely identified by username/

project_name:tag. We give the name of our deployment as sentiment-app by run‐
ning the following command:

kubectl create deployment sentiment-app --image=textblueprints/sentiment-app:v0.1

Once it has been started, we can confirm that it’s running with the command kubectl
get pods, which will show us that we have one pod running. A pod is analogous here
to the container; in other words, one pod is equivalent to a running container of the
provided image. However, we have a three-node cluster, and we can easily deploy
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more instances of our Docker image. Let’s scale this to three replicas with the follow‐
ing command:

kubectl scale deployment sentiment-app --replicas=3

You can verify that the other pods have also started running now. Sometimes there
might be a delay as the container is deployed to the nodes in the cluster, and you can
find detailed information by using the command kubectl describe pods. By having
more than one replica, we enable our REST API to be continuously available even in
the case of failures. For instance, let’s say one of the pods goes down because of an
error; there would be two instances still serving the API. Kubernetes will also auto‐
matically create another pod in case of a failure to maintain the desired state. This is
also the case since the REST API is stateless and would need additional failure han‐
dling in other scenarios.

While we have deployed and scaled the REST API, we have not made it available to
the internet. In this final step, we will add a LoadBalancer service called sentiment-
app-loadbalancer, which acts as the HTTP server exposing the REST API to the
internet and directing requests to the three pods based on the traffic. It’s important to
distinguish between the parameter port, which is the port exposed by the LoadBa
lancer and the target-port, which is the port exposed by each container:

kubectl expose deployment sentiment-app --name=sentiment-app-loadbalancer
--type=LoadBalancer --port 5000 --target-port 5000

If you run the kubectl get service command, it provides a listing of all Kubernetes
services that are running, including the sentiment-app-loadbalancer. The parame‐
ter to take note of is EXTERNAL-IP, which can be used to access our API. The
sentiment-app can be accessed using the link http://[EXTERNAL-IP]:5000/apidocs,
which will provide the Swagger documentation, and a request can be made to http://
[EXTERNAL-IP]:5000/api/v1/sentiment:

$ kubectl expose deployment sentiment-app --name=sentiment-app-loadbalancer \
--type=LoadBalancer --port 5000 --target-port 5000
service "sentiment-app-loadbalancer" exposed
$ kubectl get service
NAME                         TYPE           CLUSTER-IP    EXTERNAL-IP
kubernetes                   ClusterIP      10.3.240.1    <none>
sentiment-app-loadbalancer   LoadBalancer   10.3.248.29   34.72.142.113

Let’s say you retrained the model and want to make the latest version available via the
API. We have to build a new Docker image with a new tag (v0.2) and then set the
image to that tag with the command kubectl set image, and Kubernetes will auto‐
matically update pods in the cluster in a rolling fashion. This ensures that our REST
API will always be available but also deploy the new version using a rolling strategy.
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When we want to shut down our deployment and cluster, we can run the following
commands to first delete the LoadBalancer service and then tear down the cluster.
This will also release all the compute instances you were using:

kubectl delete service sentiment-app-loadbalancer

gcloud container clusters delete sentiment-app-cluster

This blueprint provides a simple way to deploy and scale your machine learning
model using cloud resources and does not cover several other aspects that can be cru‐
cial to production deployment. It’s important to keep track of the performance of
your model by continuously monitoring parameters such as accuracy and adding
triggers for retraining. To ensure the quality of predictions, one must have enough
test cases and other quality checks before returning a result from the API. In addi‐
tion, good software design must provide for authentication, identity management,
and security, which should be part of any publicly available API.

Blueprint: Automatically Versioning and
Deploying Builds
In the previous blueprint, we created the first deployment of our REST

API. Consider that you now have access to additional data and retrained your model
to achieve a higher level of accuracy. We would like to update our REST API with this
new version so that the results of our prediction improve. In this blueprint, we will
provide an automated way to deploy updates to your API with the help of GitHub
actions. Since the code for this book and also the sentiment-app is hosted on GitHub,
it made sense to use GitHub actions, but depending on the environment, you could
use other tools, such as GitLab.

We assume that you have saved the model files after retraining. Let’s check in our new
model files and make any additional changes to main.py. You can see these additions
on the Git repository. Once all the changes are checked in, we decide that we are sat‐
isfied and ready to deploy this new version. We have to tag the current state as the
one that we want to deploy by using the git tag v0.2 command. This binds the tag
name (v0.2) to the current point in the commit history. Tags should normally follow
Semantic Versioning, where version numbers are assigned in the form
MAJOR.MINOR.PATCH and are often used to identify updates to a given software
module. Once a tag has been assigned, additional changes can be made but will not
be considered to be part of the already-tagged state. It will always point to the original
commit. We can push the created tag to the repository by running git push origin
tag-name.
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Using GitHub actions, we have created a deployment pipeline that uses the event of
tagging a repository to trigger the start of the deployment pipeline. This pipeline is
defined in the main.yml file located in the folder .github/workflow/ and defines the
steps to be run each time a new tag is assigned. So whenever we want to release a new
version of our API, we can create a new tag and push this to the repository.

Let’s walk through the deployment steps:

name: sentiment-app-deploy

on:
  push:
    tags:
      - '*'

jobs:
  build:
    name: build
    runs-on: ubuntu-latest
    timeout-minutes: 10
    steps:

The file starts with a name to identify the GitHub workflow, and the on keyword
specifies the events that trigger the deployment. In this case, we specify that only Git
push commands that contain a tag will start this deployment. This ensures that we
don’t deploy with each commit and control a deployment to the API by using a tag.
We can also choose to build only on specific tags, for example, major version revi‐
sions. The jobs specifies the series of steps that must be run and sets up the environ‐
ment that GitHub uses to perform the actions. The build parameter defines the kind
of build machine to be used (ubuntu) and a time-out value for the entire series of
steps (set to 10 minutes).

Next, we specify the first set of actions as follows:

    - name: Checkout
      uses: actions/checkout@v2

    - name: build and push image
      uses: docker/build-push-action@v1
      with:
        username: ${{ secrets.DOCKER_USERNAME }}
        password: ${{ secrets.DOCKER_PASSWORD }}
        repository: sidhusmart/sentiment-app
        tag_with_ref: true
        add_git_labels: true
        push: ${{ startsWith(github.ref, 'refs/tags/') }}

    - name: Get the Tag Name
      id: source_details
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      run: |-
        echo ::set-output name=TAG_NAME::${GITHUB_REF#refs/tags/}

The first step is typically always checkout, which checks out the latest code on the
build machine. The next step is to build the Docker container using the latest commit
from the tag and push this to the Docker Hub registry. The docker/build-push-
action@v1 is a GitHub action that is already available in GitHub Marketplace, which
we reuse. Notice the use of secrets to pass in the user credentials. You can encrypt and
store the user credentials that your deployment needs by visiting the Settings >
Secrets tab of your GitHub repository, as shown in Figure 13-5. This allows us to
maintain security and enable automatic builds without any password prompts. We
tag the Docker image with the same tag as the one we used in the Git commit. We
add another step to get the tag and set this as an environment variable, TAG_NAME,
which will be used while updating the cluster.

Figure 13-5. Adding credentials to your repository using secrets.

For the deployment steps, we have to connect to our running GCP cluster and update
the image that we use for the deployment. First, we have to add PROJECT_ID, LOCA
TION_NAME, CLUSTER_NAME, and GCLOUD_AUTH to the secrets to enable this action. We
encode these as secrets to ensure that project details of our cloud deployments are not
stored publicly. You can get the GCLOUD_AUTH by using the provided instructions and
adding the values in the downloaded key as the secret for this field.

The next steps for deployment include setting up the gcloud utility on the build
machine and using this to get the Kubernetes configuration file:
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    # Setup gcloud CLI
    - uses: GoogleCloudPlatform/github-actions/setup-gcloud@master
      with:
        version: '290.0.1'
        service_account_key: ${{ secrets.GCLOUD_AUTH }}
        project_id: ${{ secrets.PROJECT_ID }}

    # Get the GKE credentials so we can deploy to the cluster
    - run: |-
        gcloud container clusters get-credentials ${{ secrets.CLUSTER_NAME }} \
                                           --zone ${{ secrets.LOCATION_ZONE }}

Finally, we update the Kubernetes deployment with the latest Docker image. This is
where we use the TAG_NAME to identify the latest release that we pushed in the second
step. Finally, we add an action to monitor the status of the rollout in our cluster:

    # Deploy the Docker image to the GKE cluster
    - name: Deploy
      run: |-
        kubectl set image --record deployment.apps/sentiment-app \
                  sentiment-app=textblueprints/sentiment-app:\
                  ${{ steps.source_details.outputs.TAG_NAME }}

    # Verify that deployment completed
    - name: Verify Deployment
      run: |-
        kubectl rollout status deployment.apps/sentiment-app
        kubectl get services -o wide

You can follow the various stages of the build pipeline using the Actions tab of your
repository, as shown in Figure 13-6. At the end of the deployment pipeline, an upda‐
ted version of the API should be available at the same URL and can also be tested by
visiting the API documentation.

This technique works well when code and model files are small enough to be pack‐
aged into the Docker image. If we use deep learning models, this is often not the case,
and creating large Docker containers is not recommended. In such cases, we still use
Docker containers to package and deploy our API, but the model files reside on the
host system and can be attached to the Kubernetes cluster. For cloud deployments,
this makes use of a persistent storage like Google Persistent Disk. In such cases, we
can perform model updates by performing a cluster update and changing the 
attached volume.
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Figure 13-6. GitHub deployment workflow initiated by pushing a Git tag.

Closing Remarks
We introduced a number of blueprints with the aim of allowing you to share the anal‐
ysis and projects you created using previous chapters in this book. We started by
showing you how to create reproducible conda environments that will allow your
teammate or a fellow learner to easily reproduce your results. With the help of
Docker environments, we make it even easier to share your analysis by creating a
complete environment that works regardless of the platform or infrastructure that
your collaborators are using. If someone would like to integrate the results of your
analysis in their product or service, we can encapsulate the machine learning model
into a REST API that can be called from any language or platform. Finally, we pro‐
vided a blueprint to easily create a cloud deployment of your API that can be scaled
up or down based on usage. This cloud deployment can be updated easily with a new
version of your model or additional functionality. While adding each layer of abstrac‐
tion, we make the analysis accessible to a different (and broader) audience and reduce
the amount of detail that is exposed.

Further Reading
Scully, D, et al. Hidden Technical Debt in Machine Learning Systems. https://

papers.nips.cc/paper/2015/file/86df7dcfd896fcaf2674f757a2463eba-Paper.pdf.
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